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Welcome to our new ISP Application Guide and CPLD Databook!

This book will provide you with all the technical specifications and
application information you'll need to fully utilize the advanced
features of our exciting new XC9500 In-System Programmable™
CPLDs, as well as complete technical specifications on our industry
standard, low cost, XC7300 family. Use these advanced devices to
gain the high performance, time-to-market, and cost benefits that are
necessary for your company’s end products.

Our goal at Xilinx is to continually innovate new programmable
logic devices and technologies, giving you the means to create
superior, value-added products in your market. So, no matter what
your design needs are, Xilinx has the right density with the right
performance at the right price for all your programmable logic
requirements.

We also provide the best customer support in the industry. You'll
find our applications staff always ready and capable of helping you
create the most efficient, highest performance designs possible. In
addition, our web site (www.xilinx.com) is filled with the latest
product and applications information; a quick, thorough, and up to
date resource that can save you valuable time.

We are pleased to help you with all of your programmable logic
requirements. Thank you for choosing Xilinx.
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Using the XC9500 JTAG
Boundary-Scan Interface

Application Note

Summary

This application note explains the XC9500 boundary-scan interface and demonstrates the software available for
programming and testing XC9500 CPLDs. An appendix summarizes JTAG operations and overviews the additional
operations supported by XC9500 CPLDs for in-system programming.

Xilinx Family
XC9500

Introduction

IEEE Boundary-Scan Standard 1149.1, also known as
JTAG, is a testing standard that uses software to reduce
costs. The primary benefit of the standard is its ability to
transform difficult printed circuit board testing problems into
well-structured, efficient solutions that are easily performed
in software. The standard defines a hardware architecture
and the mechanisms for its use.

The JTAG standard itself defines instructions that can be
used to perform functional and interconnect tests as well as
built-in self test procedures. Vendor-specific extensions to
the standard allow execution of maintenance and diagnos-
tic applications as well as permit programming algorithms
for reconfigurable parts.

Connecting Devices in a Boundary-Scan
Chain

All devices in the chain share the TCK and TMS signals.
The system TDI signal is connected to the TDI input of the
first device in the boundary-scan chain. The TDO signal
from that first device is connected to the TDI input of the
second device in the chain and so on. The last device in the
chain has its TDO output connected to the system TDO pin.
This configuration is illustrated in Figure 2.

Device 1

Downloading a Design File

The JTAG Download Cable, shown in Figure 1, connects to
the parallel printer port of any PC. The cable contains driv-
ers to buffer the signals as they are driven into the system,
and the power for the drivers is derived from the target sys-
tem. The cable’s Vo and GND wires are connected to the
corresponding signals on the target system, and the
remaining four wires are connected to the corresponding
TAP inputs on the target system. The cable pins are clearly
labeled. TRST is not supported by the JTAG Download
cable and if any parts in the system have a TRST, this pin
should be attached to V¢ through a pullup resistor.

Figure 3 shows how the cable is connected to the printed
circuit board for programming. Connect all six flying leads
to the target board and observe the power sequencing rec-
ommendations.

Top View

JTAG Header
Parallel Cable
FPGA Header

| Bottom View

Figure 1: XC9500 JTAG Download Cable

TDI TDI TDO

T™S
—{TCK

System

T™S

Device 2

I TDO—7/——{TDI TDO
™S ™S
TCK TCK

Device N

N N
N

TCK
TDO

N
~

Figure 2: Single Port Serial Boundary-Scan Chain
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Power sequencing

Cable protection ensures the parallel port cannot be dam-
aged through normal cable operation. For increased safety,
ensure that the PC is always powered up before the target
system.

When powering down, turn off the target system first, and
then turn off the host PC.

EZTag Download Software

Upon initiation of the EZTag Download Software, the paral-
lel port is queried to verify the connection of the JTAG
Download cable. The target system power must be on and
the cable attached for proper verification. If an error mes-
sage is returned, stating that the cable could not be found
or indicating a cable other than the JTAG Download cable
was identified, check the cable power connections.
Figure 4 shows the EZTag software user interface.

Using EZTag
The following steps outline the downloading procedure:

1. Invoke EZTag.

2. Select the files for each device in the chain ordered from
system TDI to TDO (use JEDEC files for XC9500
devices or BSDL files for other JTAG-compatible
devices).

3. Select the operations desired for each XC9500 part.

4. Select the “execute” button and downloading will begin.
Detailed information regarding the downloading
progress and any failure conditions will be displayed in
the system log file.

Using the XChecker Cable

The XChecker cable can also be used to program XC9500
devices. In this case, attach the TDI, TCK, TMS, V¢, and

Memory

System
Logic

uP

Figure 3: Target PCB Connected for Program/Test

GND pins to the target board with the flying leads, as
shown in Figure 5. The TDO signal function will be per-
formed by the XChecker signal labeled “RD”. The EZTag
software will automatically query the computer 1/O ports
and detect the existence of the XChecker cable.

See Appendix 1 for more details on the specific JTAG fea-
tures supported.

Interfacing to Third-Party Boundary-
Scan Test Toois

BSDL files are required for interfacing to third-party bound-
ary-scan board test equipment (ATE), automatic test pat-

tern generation software (ATPG) and JTAG-based
development and de-bugging systems.

The BSDL files for all package variations of the available
XC9500 devices can be found in the EZTag software “data”
directory. The BSDL file names are shown in Table 1.

Table 1: BSDL Files

~ PartType Package | BSDL File Name
IXC9536  |PC44 xc364dpbsd |
IXC9536 VQ44 Ixc3664v.bsd |
XC95108  |PQ100 “xc108100.bsd
XC95108 ~ |Paieo "|xc108100.bsd
XC95108 PC84 xc10884.bsd
XC95108 TQ100 xc108tq.bsd
XC95216 PQ160  |xc216160.bsd
XC95216 PQ208  |xc216208.bsd
XC9572 PQ100 ~ [xc72100p.bsd
XC9572 TQ100 ~ |xc72100t.bsd :
XC9572 PCa4 xC7284.bsd ]
XC95288 HQ208 xc288208.bsd j

FastFLASH

X5849
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EZTAG - JTAG Download Software
File Operation Cable Help

(1 WXC95108 c:\xact9500\ffdemol_jed [Program [
2 WXC95108 c:\xact3500\ffdemod. jed Functional Test [Jl
(3 W%C95108 c:\xact9500\count4. jed verity [

[ Device Programming Files ] [~ Chain Editing Operations — ] [ Device BSDL Files
=k wsoos s N || (N (O || == o=
: = e\
= xact9500
3 xnf9000
: xc108100.bsd
fidemo.jed xc108160.bsd
fidemol.jed xc10884_bsd
ffdemo2.jed xc95108.bsd
fidemo3.jed
Figure 4: The EZTag Download Software User Interface
S XILINX
Top View
Header 2 -————J
Header 1
|
CAUTION a1
Model: DLC4
Power: 5V 100mA Typ. \ , G
Serial: DL- 12345 & Bottom View

- ITIVE
& XILINX m.nusf‘?&?«?e"wc%

X5871

Figure 5: XChecker Cable
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Appendix 1 - JTAG Details

The top level schematic of the test logic defined by IEEE
Std. 1149.1 includes several key blocks as shown in
Figure 6:

The TAP Controller

The TAP controller responds to control sequences supplied
through the test access port (TAP) and generates the
clocks and control signals required by the other circuit
blocks.

The Instruction Register

The instruction register is a shift register-based circuit and
is serially loaded with instructions that select an operation
to be performed.

The Data Registers

The data registers are a bank of shift registers. The stimuli
required by an operation are serially loaded into the data
registers, selected by the current instruction. Following exe-
cution of the operation, results can be shifted out for exam-
ination.

The JTAG Test Access Port

The JTAG Test Access Port (TAP) has four pins that drive
the circuit blocks and control specific operations. The TAP
loads and unloads instructions and data. The four TAP pins
are: TMS, TCK, TDI and TDO. The function of each TAP pin
is:

¢ TMS - Test Mode Select is the mode input signal to the
TAP Controller. The TAP controller is a 16-state finite
state machine (FSM) that controls the JTAG engine. At
the rising edge of TCK, TMS determines the TAP
controller state sequence. TMS has an internal pull-up
resistor to provide a logic 1 to the system if TMS is not
driven.

* TCK - JTAG Test Clock sequences the TAP controller
as well as all JTAG registers.

¢ TDI -Test Data Input is the serial data input to all JTAG
instruction and data registers. The TAP controller state
and instruction register contents determine which
register is fed by TDI for any operation. TDI has an
internal pull-up resistor to provide a logic 1 to the
system if TDI is not driven. TDI is loaded into the JTAG
registers on TCK's rising edge.

e TDO - Test Data Out is the serial data output for all
JTAG instruction and data registers. The TAP controller
state and instruction register contents determine which
register feeds TDO for a specific operation. Only one
register (instruction or data) is connected between TDI
and TDO for any JTAG operation. TDO changes state
on TCK'’s falling edge and is only active during the
shifting of data through the device. TDO is in a 3-state
condition at all other times.

- Boundary Scan Cells G
110 D—_ _'_CE /10
Pins & —S}— —K— Pins
o=l e Device &=
! Logic T
Test Register (10)
[ Options | PSTATUS (7) JI$_
Configuration Register (27)
| »[Address (17) | PDATA (8)| StatusJ—————&—
Dl nput > Identification Register (32)

I Version [ Part No.| Manufacturer |

SR

Clocks/Shift Signals

[ 1]

USERCODE (32)

JTAG TAP ,

Controller Bypass Register (1)

6 é Control/Enable Signals

TMS TCK Instruction Decode
L OPCODE

Instruction Register (8)

Figure 6: JTAG Architecture

{J/\ Select

TCK

X5850
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Test-Logic-Reset

Run-TesvIdle

i

1

Select-DR-Scan

0
y
3
Capture-DR

=

Update-DR

0

0

Figure 7: TAP Controller State Diagram

JTAG TAP Controller

The TAP Controller is a 16-state FSM, that controls the
loading of data into the various JTAG registers. A state dia-
gram of the TAP controller is shown in Figure 7.

The state of TMS at the rising edge of TCK determines the
sequence of state transitions. There are basically two state
transition paths for sampling the signal at TDI: one for shift-
ing information to the instruction register and one for shift-
ing data into the data register.

JTAG TAP Controller States
Test-Logic-Reset

This state is entered on device power-up when at least five
TCK clocks occur with TMS held high. Entry into this state
resets all JTAG logic so that it does not interfere with the

[P P T AP T o VoV oV oV R Ty Sy

***** | mmmamminmond baio o |IDCODE instruction

nuiinial LOINIPLNSIHI IVYIG, al ld oaus uie
into the instruction register.

Run-Test-idle

In this state certain operations can occur depending on the
current instruction. For the XC9500 family, “Run-Test-Idle”
causes generation of the program, verify, erase, and POR
(Power-On-Reset) pulses when the associated ISP instruc-
tion is active.

X5852

Select-DR-Scan

This is a transitional state entered prior to performing a
scan operation on a data register or in passing to the
Select-IR-Scan state.

Select-IR-Scan

This is a transitional state entered prior to performing a
scan operation on the instruction register or in returning to
the Test-Logic-Reset state.

Capture-DR

This state allows data to be loaded from parallel inputs into
the data register selected by the current instruction at the
rising edge of TCK. If the selected data register has no par-
allel inputs, the register retains its state.

Shift-DR

in this state data is shifted by one stage in the currentiy
selected register from TDI towards TDO by on each rising
edge of TCK.

Exit1-DR

This is a transitional state allowing the option of passing to
the Pause- DR state or transitioning directly to the Update-
DR state.

January, 1997 (Version 1.0)
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Pause-DR

This is a wait state that allows shifting of data to be tempo-
rarily halted.

Exit2-DR

This is a transitional state allowing the option of passing to
the Update-DR state or returning to the Shift-DR state to
continue accepting data.

Update-DR

In this state the data contained in the currently selected
data register is loaded into a latched parallel output (for reg-
isters that have such a latch) on the falling edge of TCK
after entering this state. The parallel latch prevents
changes at the parallel register output from occurring dur-
ing the shifting process.

Capture-IR

In this state data is loaded from parallel inputs into the
instruction register on the rising edge of TCK. The least two
significant bits of the parallel inputs must have the value 01,
and the remaining 6 bits are either hard-coded or used for
monitoring the security and data protect bits.

Shift-IR

In this state instruction register values are shifted one stage
towards TDO on each rising TCK edge.

Exit1-IR

Exit1-IR is a transitional state allowing the option of transi-
tioning to the Pause-IR state or the Update-IR state.

Pause-IR

Pause-IR allows shifting of the instruction to be temporarily
halted.

Exit2-IR

Exit2-IR is a transitional state allowing the option of passing
to the Update-IR state or returning to the Shift-IR state to
continue shifting in data.

Update-IR

In this state instruction register values are parallel latched
on the falling edge of TCK. The parallel latch prevents
changes at the parallel output of the instruction register
from occurring during the shifting process.

JTAG Instructions Supported in
XC9500 Parts

Mandatory Boundary Scan Instructions
BYPASS

The BYPASS instruction configures the device to bypass
the scan registers and pass immediately to TDO.

SAMPLE/PRELOAD

The SAMPLE/PRELOAD instruction allows a snapshot of
the normal operation of a component to be taken and
examined. It also allows data values to be loaded onto the
latched parallel outputs of the boundary scan shift register
prior to the selection of other boundary-scan test instruc-
tions.

EXTEST

The EXTEST instruction allows testing of off-chip circuitry
and board level interconnections.

XC9500 Additional Boundary Scan
Instructions
INTEST

The INTEST instruction allows testing of the on-chip sys-
tem logic while the component is already on the board.

HIGHZ

HIGHZ permits automatic placement of all outputs on the
XC9500 part to high impedance (3-state) mode. This con-
dition can be beneficial for board testing strategies.

IDCODE

The IDCODE instruction allows blind interrogation of the
components assembled onto a printed circuit board to
determine what components exist in a system.

USERCODE

The USERCODE instruction allows a user-programmable
identification code to be shifted out for examination. This
allows the programmed function of the component to be
determined.

XC9500 Reconfiguration Instructions

ISPEN

ISPEN activates the XC9500 device for In-System Pro-
gramming.

FPGM

FPGM programs bits at specified addresses.

FERASE

FERASE erases a block of programming cells.

FVFY

FVFY verifies the programming at specified addresses.

ICDEY

O =

ISPEX transfers the XC9500 memory cell contents to inter-
nal low power configuration latches.
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Device Operations

The programming information is extracted from the JEDEC
file generated by the fitter software. The JEDEC file name
is defaulted to design_name.jed.

Device operation options available to users are:

Program & Verify

Download contents of the JEDEC file to the device pro-
gramming registers. Configure the device and read back
the contents of device programming registers and compare
them to the JEDEC file. Report any differences to the user.

Verify

Read back contents of the device programming registers
and compare them with the JEDEC file.

Erase
Clear the device configuration information.
Functional Test

Apply user-specified functional vectors from the JEDEC file
to the device, comparing results obtained with expected
values. Report any differences.

Read Device ID

Read and display the contents of the JTAG IDCODE regis-
ter.

Read User Signature

The signature value is set by the user at programming time.
It is valid only after programming. This function reads the
contents of the JTAG USERCODE register and displays the
result.

Bypass

Ignore this device when addressing devices in the JTAG
boundary scan chain.

Readback

Extracts contents of device programming registers and cre-
ates a new JEDEC file with the results.

Checksum

Extract the contents of device programming registers and
calculate a checksum for comparison with the expected
value

BSDL Description Summary

The Boundary-Scan Description Language (BSDL)
describes the boundary scan features of a component. The
system looks for BSDL files along the XACT path and in the
current working directory. A BSDL file must be specified for
each non-XC9500 device in the JTAG chain.

The name of the BSDL file
device_name.bsd.

JEDEC Description Summary

The JEDEC file is an ASCII file containing the configuration
information and optionally the vectors that can be used to
verify the functional behavior of the configured part. A
JEDEC file must be specified for each XC9500 device in
the JTAG chain; one JEDEC file is generated for each
XC9500 device in the system by the fitter software.

The name of the JEDEC file
design_name.jed.

is assumed to be

is assumed to be
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Application Note

Summary

This application Note discusses basic design considerations for in-system programming of multiple XC9500 devices in a
boundary-scan chain, and shows how to design systems that contain multiple XC9500 devices as well as other IEEE
1149.1-compatible devices.

Xilinx Family
XC9500

Introduction XC9500 TAP Characteristics

The XC9500 family performs both in-system programming The AC and DC characteristics of the XC9500 TAP are

and IEEE 1149.1 boundary-scan (JTAG) testing via a sin- described as follows.

gle 4-wire Test Access Port (TAP). This simplifies system L

designs and allows standard Automatic Test Equipmentto ~ TAP Timing

perform both functions. Xilinx also provides the EZTag™  Figyre 1 shows the timing relationships of the TAP signals.

software that automatically programs and tests XC9500  These TAP timing characteristics are identical for both

devices from the standard test vector and device program- boundary-scan and ISP operations. The timing for the

ming files generated by most GPLD development tools. INPUT-/O-CLK and /O signals is relevant to boundary-
scan operations (such as EXTEST) that activate or strobe
the system pins.

TCKMIN
¢ > ! |
| I
TCK ' ‘
! ™SS TMSH : l
| 1 ! 4
| ! 1
™ KXo X :
TDIS | TDIH : |
1 ' '
[ | N |
oI XX |
™OZX 7 |_JDOV T TDOKZ
> : ! : X |
| I |
00 — X | —
TINS,  TINH 1 |
- | |
Input-/O-CLK ‘g X !
DT : X Tiov f

>
Vo X

Figure 1: Test Access Port Timing
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TAP AC Parameters

Table 1 shows the timing parameters for the TAP wave-
forms shown in Figure 1.

Table 1: Test Access Port Timing Parameters (ns)

Symbol |  Parameter [ Min | Max |
TCKMIN |[TCK Minimum Clock Period | 100
TMSS  |TMSSetupTme | 10 | |
TMSH | TMS Hold Time 10
TDIS TDI Setup Time ) 15 i
TDIH TDIHold Time | 25 |
TDOZX__ |TDO Float to Valid Delay 7 35 |
TDOXZ |TDI Valid to Float Delay 35
TDOV  |TDO Valid Delay T
TINS /O Setup Time 15 |
TINH I/O Hold Time 30 |
TIOV EXTEST Output Valid Delay | [_3-5"

Terminating TAP pins

The XC9500 TDI and TMS pins have internal 10Kohm pull-
up resistors, which are required by the 1149.1 standard.
Because these pins are internally terminated, no further
termination is required on the TAP connections.

Capacitive Decoupling

Each XC9500 device should have a 0.1uf and a 1.0uf
capacitor connected directly between its VCC and GND
pins. This helps to provide stable, noise-free power.

Calculating Maximal Chain Lengths

The XC9500 TAP pins have approximately 5 pF of signal
loading. Because each TDI input is driven by only one TDO
output (or equivalent single drive) there are no signal limita-
tions related to those connections beyond those of stan-
dard board interconnect design rules.

The maximum TDO frequency will be 1/2 of the maximum
TCK frequency. Because TCK and TMS are parallel driven
signals the maximum number of parts in a single boundary-

scan chain is determined by the ability of the TCK and TMS
drivers to deliver the signals at the appropriate frequencies
to the parts in the boundary-scan chain. Standard board-
layout design rules also apply here.

If the boundary-scan chain includes more than 16 devices,
buffers for TMS and TCK are recommended.

Part Enable Ordering

The ISPEX instruction allows the flexibility to enable parts
in an arbitrary order. In some systems the order in which
parts are enabled is critical. For instance, if a slave device
awakens before its controller, it may enter an error condi-
tion from which it cannot exit.

The EZTag software enables each part immediately after
programming. In concurrent mode the parts are enabled in
order from system TDI to system TDO.

Creating Boundary-Scan Chains

There are a number of possibilities for creating boundary
scan chains, several of which are discussed in the following
sections

Single Port Serial Chain

The most simple and widely-used boundary-scan configu-
ration is the single port serial chain shown in Figure 2, and
only this type of configuration is supported by the EZTag
software. In this configuration, four pins are allocated in the
system to facilitate connection of the TCK (clock), TMS
(mode), TDI (Test Data Input), and TDO (Test Data Output)
signals.

All devices in the chain share the TCK and TMS signals.
The system TDI signal is connected to the TDI input of the
first device in the boundary-scan chain. The TDO signal
from that first device is connected to the TDI input of the
second device in the chain and so on. The last device in the
chain has its TDO output connected to the system TDO pin.

Other more complex chain variations are discussed later in
this application note. Software supplied by third party
developers supports these complex chain configurations.

Device 1 Device 2 Device N
™ — T 1D m TDO—//——1TDI TD
™S ™S ™S
£ —TCK TCK TCK
‘«b‘
>| ™™s /e
TCK //
TDO—

Figure 2: Single Port Serial Boundary-Scan Chain
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Device 1 Device 2 Device N
MUX DI TD ™ TDO—//——TDI TDO
™S ™S ™S
—TCK —TCK TCK
Path 1
_ ‘,/
//
71/
TDI
TMS
TCK
Device 1 Device 2 Device N
E DI TD ™ TDO—/————{TDI TDO—
® T™MS ™S T™MS
5 Path 2 - TCK

—TCK [-TCK

NN
N

Select
DE-MUX

TDO

N
N

Figure 3: Star Configuration

Star Configuration

The single port serial chain, shown in Figure 3, configura-
ticn has a significant limitation due to the possibility that a
defect in the backplane wiring or the removal of a board
from the system will break the chain. This would make ISP
and system testing impossible. In order to overcome this
limitation and make the 1149.1 standard practical for very

large systems, the standard allows the connection of
boundary-scan chains in star configuration in which the
four pins of the TAP are multiplexed. The costs of this
approach are the additional overhead required to switch
between scan paths, and the reduced TCK frequency due
to TMS routing delays.
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Multiple Independent Paths

In the topology shown in Figure 4, the TDI and TDO paths
are independent allowing data to be streamed into and out
of the portions of the system independently.

Device 1

TDI ™ T TDO

™S ™S
TCK TCK

Device 2

DI D1 TDO! TDO

TMS
—TCK

Device N

ol T TDO— 120

™S
L—TCK

Figure 4: Multiple Independent Chains

Parallel Chains

In the topology shown in Figure 5, TDI and TMS inputs are
independent but the TDO is shared. This means that
although data can be streamed into portions of the system
independently, data being streamed out is time multiplexed
through TMS control.

Device 1 Device 2
TDI ™I TD TDI  TDOM—
™S ™S
—TCK TCK
T™S —4 l—'
TCK
Device 3 Device 4
TDI Ol TD DI TDO
—{TMS ™S
I—»—j TCK TCK
™S —s

Figure 5: Parallel Chains
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In-System Programming
Using the Xilinx Download Cables

The EZTag software can be used with either the Xilinx
JTAG parallel download cable or the Xilinx serial XChecker
cable.

IBM PC compatible systems can use the Xilinx high speed
Parallel Cable Il (part number DLC5). The cable pod
includes port protection and drive circuitry which requires a
5V power supply that is usually is supplied by the target
system. This cable operates TCK at a frequency of
between 150KHz and 350Khz which is determined by the
port speed of the host computer.

Sun and HP workstations (as well as IBM PC-compatible
systems) use the Xilinx XChecker cable, which connects to
the computer’s serial port. The XChecker cable pod con-
tains an XC3042 FPGA and 1Mbit of static RAM. The
FPGA is configured to operate as a UART to facilitate host-
cable communications. It also includes circuitry to enable
high speed 1149.1 TAP signal processing the collecting
TDO results in XChecker's static RAM. The TDO data can
then be uploaded to the host. Like the parallel cable, the
XChecker cable requires 5V to operate and this is usually
provided by the target system.

When addressing the TAP the XChecker cable operates at
TCK frequencies of approximately 1 MHz, which is con-
trolled by a crystal in the XChecker cable pod. Although the
cable TAP driver can operate at 1MHz, the overall speed of
this cable is determined by the serial port throughput which
is typically 38K baud.

The parallel and serial cable characteristics are:

* Power - A 5V power supply capable of providing 125
mA peak current and 60 mA steady state is required.
The parallel cable requires a 5V power supply capable
of providing 20 mA current.

¢ Drive Capabilities - The XChecker cable outputs are
capable of sourcing or sinking up to 4 mA. The parallel
cable outputs are capable of sourcing or sinking up to
20 mA.

» Special considerations - For both the XChecker and
parallel download cables, the 1149.1 TAP drive
electronics is in the cable pod. This should be taken into
account when extending the signal reach from the pod
to the system. When extending the cable from the port
connection side, the drive capabilities of the host
computer’s port itself must be considered.

Concurrent Program and Erase Modes

One operating mode of the EZTag software performs con-
current erasing and programming. The advantage of this
approach is speed; the overall programming time is dic-
tated by the slowest part in the boundary-scan chain. Also,
the total number of vectors required is optimized. The dis-

advantage of this approach is that the system must supply
a peak operating current equal to that required by all parts
being programmed or erased concurrently. For more infor-
mation on how to use this feature in EZTag, please see the
Xilinx EZTag User’s Guide.

Note: although XC9500 parts can be programmed concur-
rently, the current EZTag software does not generate an
SVF file that supports this operation. The current EZTag
generates an SVF file that bypasses all parts except the
one being programmed.

ISP Mode I/0 Behavior

The functional pins of the device transition to a high-imped-
ance state when ISP mode is entered using the ISPEN
instruction. At the completion of an ISP programming or
erase operation, the ISPEX instruction is executed. When
leaving ISPEX mode (by shifting in an new boundary-scan
instruction other than ISPEN), the device initializes to its
programmed state; the functional pins take on their
selected operations (input, output, or bidirectional) and the
device registers take on their pre-selected initial values.

System-Level Design Issues

The normal operating mode of a system or a device in the
system is known as mission mode which is different from
test mode. When operating a device in boundary-scan test
mode (such as when using either INTEST or EXTEST) as
well as when performing ISP operations, the device is
effectively disconnected from the overall system. When the
operation is completed, the device is re-connected to the
system. This can sometimes result in unpredictable system
behavior. Additional discussion regarding this problem can
be found in “The Boundary-Scan Handbook” by Ken
Parker. Fortunately, the XC9500 family supplies two propri-
etary boundary-scan instructions that serve to alleviate this
problem.

XC9500 Mission Mode Exit and Re-Entry
Techniques

The XC9500 devices support two boundary-scan instruc-
tions that can be used to help alleviate the problems asso-
ciated with exiting and re-entering mission mode. The
instructions are ISPEN (ISP enable) and ISPEX (ISP exit).

* ISPEN - The ISPEN instruction is used at the beginning
of every block of ISP operations that will attempt to
access for alteration or read the device internal program
memory (such as program, erase, verify, etc.). When
the device is in ISPEN mode, the device I/O pins
immediately enter a state in which they are floating with
a weak pull-up resistor enabled on each pin. The device
pins therefore neither drive nor sense external signal
levels.

* [ISPEX - The ISPEX instruction is used to conclude
every block of ISP operations that have either been
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read from or written to the device internal program
memory. As long as the ISPEX instruction remains in
the instruction register the functional pins remain in
their lightly pulled-up high impedance state. Once the
ISPEX instruction is replaced with any other boundary-
scan instruction (except ISPEN), the device returns to
its initial power state with the pins configured to their
programmed states (input, output, or bidirectional) and
with the device flip-flops taking on their initial states.

The ISPEX operation takes approximately 100
microseconds to complete. If the ISPEX instruction is
held in the instruction register for longer than 100
microseconds, the ISPEX operation will not take effect
until the ISPEX instruction is displaced from the
instruction register.

In order to ensure safe operation, all INTEST,EXTEST, and
ISP operations involving the XC9500 parts should be
bracketed by ISPEN and ISPEX instructions.

The designer must also be careful to select an initial condi-
tion that is “system-safe” so that when the ISPEX instruc-
tion is released the XC9500 part in question will safely
resume operation with the rest of the system.

Basic Boundary-Scan Design Guidelines

The following guidelines will help ensure a successful
design.

* Make certain that all parts in the boundary-scan chain
have 1149.1 compatible test access ports.

¢ Use simple buffering for TCK/TMS signals, to simplify
test considerations for the boundary-scan TAP.

¢ Do not invert TCK or TMS pathways, to guarantee
complete test software compatibility.

* Group similar device families, and have a single level
converter interface between them, for TCK, TMS, TDI,
TDO, and system pins.

* Check that the mission logic is safe from any possible
errors that might arise while the boundary-scan data is
being shifted through the boundary-scan chain. For
example, pay close attention to bus enable or chip
select signals that might be enabled simultaneously,
causing unexpected bus contention.

* Provide the capability for the ATE to disable
conventional (non boundary-scan) IC’s whose run-time
node values might introduce conflicts with boundary-
scan logic values during test operations.

* Verify that the entire system is held in a benign state
during boundary-scan test operations.

* Verify that the set-up and hold times of TDI and TMS
with respect to TCK are met by the system.

Debugging Boundary-Scan Systems

The following guidelines and helpful information will help
isolate potential problems.

* When traversing the IR states, the CAPTURE-IR value
specified in the BSDL file is always shifted out on TDO
at SHIFT-IR. This fact can be used to test boundary-
scan chain continuity.

¢ After exit from Test-Logic-Reset, if the system
transitions directly to Shift-DR, the values shifted out on
TDO must be either the IDCODE (if implemented) or
the BYPASS register contents. If all logic 0’s are shifted
in at TDI, then the first incidence of a logic 1 on TDO
represents the first bit of an IDCODE. This fact can be
used for blind interrogation of the boundary-scan chain
and for further boundary-scan chain continuity checks.

*  When entering ISP mode via the ISPEN instruction, all
XC9500 function pins float to a weakly pulled-up high
impedance state. The pins can easily be tested for this
behavior.

* When ISPEX is shifted out of the instruction register,
the XC9500 devices should take on their programmed
values with the functional pins acting immediately as
inputs or outputs, as programmed. The pins can easily
be tested for this behavior.

* TDO assumes its defined value at the falling edge of
TCK.

¢ When not in SHIFT-IR or SHIFT-DR, TDO exhibits high
impedance.

* The last valid TDI bit clocks into the TAP with TMS high.

* In BYPASS mode, TDO equals the applied TDI data
one TCK pulse earlier.

Conclusion

When designing ISP systems, common-sense rules related
to electronic system design and board layout should be
adhered to. In order to benefit from the synergies associ-
ated with the integration of test and programming opera-
tions the designer must consciously design with the entire
system life cycle in mind.
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Application Note

Summary

The XC9500 high performance CPLD family provides in-system programmability, reliable pin locking, and JTAG boundary-
scan test capability. This powerful combination of features allows designers to make significant changes and yet keep the
original device pinouts, eliminating the need to re-tool PC boards. By using an embedded controller to program these

CPLDs from an on-board RAM or EPROM, designers can easily upgrade, modify, and test designs, even in the field.

Xilinx Family
XC9500

Introduction

The XC9500 CPLD family combines superior performance
with an advanced architecture to create new design oppor-
tunities that were previously impossible. The combination
of in-system programmability, reliable pin locking, and
JTAG test capability gives the following important benefits:

Reduces device handling costs and time to market.
Saves the expense of laying out new PC boards.
Allows remote maintenance, modification, testing.
Increases the life span and functionality of products.
Enables unique, customer-specific features.

The ISP controller shown in Figure 1 can help designers
achieve these unprecedented benefits by providing a sim-
ple means for automatically programming XC9500 CPLDs
from design information stored in EPROM. This design is
easily modified for remote downloading applications and
the included C-code can be compiled for any microcontrol-
ler.

To create device programming files, Xilinx provides the
EZTag™ software that automatically reads standard
JEDEC device programming files and converts them to
SVF format which contains both data and programming
instructions for the CPLDs. These files are then converted
to a compact binary format (XSVF) and can be stored in the
on-board EPROM. The 8051 microcontroller interprets the
XSVF information and generates the programming instruc-
tions, data, and control signals for the XC9500 CPLD.

By using a simple IEEE 1149.1 (JTAG) interface, XC9500
CPLDs are easily programmed and tested without using
expensive hardware. Multiple devices can be daisy-
chained, permitting a single 4-wire Test Access Port (TAP)
to control any number of XC9500 CPLDs or other JTAG-
compatible devices.

PO.0;
PO.1
Po.2
P03
P04
PO.5|
Pos
PO.7
EA
ALE
PSEN|
P27
P26
P28,
P2.4
P23
P22
P21
P2.0)

8051 XC9500
Program Data
Memory Memory
PSEN E‘
Address Bus (A0-A7) l I l I
Data Bus ‘oo-m) I
Address Bus (A8-A15) I

Figure 1: ISP Controller Schematic
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Programming XC9500 CPLDs

Serial Vector Format (SVF) is a syntax specification for
describing high level IEEE 1149.1 (JTAG) bus operations.
SVF was developed by Texas Instruments and has been
adopted as a standard for data interchange by JTAG test
equipment and software manufacturers such as Teradyne,
Tektronix, and others. XC9500 CPLDs accept program-
ming and JTAG boundary-scan test instructions in SVF for-
mat, via the TAP. The timing for these TAP signals is shown
in Figure 5.

The EZTag software automatically converts standard
JEDEC programming files into SVF format. However, the
SVF format is ASCII which is inefficient for embedded
applications due to its memory requirements. Therefore, to
minimize the memory requirements, SVF is converted into
a more compact (binary) format called XSVF. In this design,
an 8051 C-code algorithm interprets the XSVF file and pro-
vides the required JTAG TAP stimulus to the CPLD, per-
forming the programming and (optional) test operations
which were originally specified in the SVF file.

Note: For a description of the SVF and XSVF commands
and file formats, see Appendix A and B.

The flow for creating the programming files that are used
with this design, is shown in Figure 2.

Create The
Design
[
Fit Design

[

Output
Programming File
in JEDEC Format

1
Convert JEDEC
to SVF

1
Convert SVF

to XSVF

[

Create Intel
Hex File

I
Program EPROM
with XSVF Code

Using XABEL-CPLD or
any compatible tool

Using XACT Fitter

Using EZTag

Using svf2xsvf

Figure 2: Program Flow

JTAG Instruction Summary

XC9500 devices accept both programming and test instruc-
tions via the JTAG TAP. The JTAG commands used for pro-
gramming and functional test are:

* INTEST - Isolates the device from the system, applies
test vectors to the device input pins, and captures the
results from the device output pins.

* |SPEN - Enables the ISP function in the XC9500
device, floats all device function pins, and initializes the
programming logic.

* FERASE - Erases a specified program memory block.

* FPGM - Programs specific bit values at specified
addresses. An FPGMI instruction is used for the
XC95216 and larger devices which have automatic
address generation capabilities.

* FVFY - Reads the fuse values at specified addresses.
An FVFYl instruction is used for the XC95216 and
larger devices which have automatic address
generation capabilities.

¢ ISPEX - Exits ISP Mode. The device is then initialized to
its programmed function with all pins operable.

¢« SAMPLE/PRELOAD - Allows values to be loaded into
the boundary scan register to drive the device output
pins. Also captures the values on the input pins.

¢ BYPASS - Bypasses a device in a boundary scan chain
by functionally connecting TDI to TDO.

The following instructions are also available in the XC9500
devices but are not used for programing or functional test:

¢ EXTEST - Isolates the device I/O pins from the internal
device circuitry to enable connectivity tests between
devices. It uses the device pins to apply test values and
to capture the results.

* [DCODE - Returns a 32-bit hardwired identification
code that defines the part type, manufacturer, and
version number.

¢ USERCODE - Returns a 32-bit user-programmable
code that can be used to store version control
information or other user-defined variables.

* HIGHZ - Causes all device pins to float to a high
impedance state.

Creating an SVF File Using EZTag

This procedure shows how to create an SVF file; it
assumes that the Xilinx XACT version 6.0.0 software, or
newer, is being used, which includes the XC9500 fitter and
the EZTag software.

1. Create the design using XABEL-CPLD or any compati-
ble third-party design entry tool.

2. Fit the design and save it to a JEDEC output file.

3. Invoke the EZTag software from the XACT command
line using the following command:

eztag -svf

1-16
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The following message appears:

Xilinx (R) EZTAG XC9500-CPLD-6.0.0 - JTAG
Boundary-Scan Download

Copyright (C) Xilinx Inc. 1991-1995. All
Rights Reserved.

SVF GENERATION MODE.
EZTAG ?

4. At the EZTAG ? prompt type the following command:

part deviceTypel:designNamel
deviceType2: designName2
deviceTypeN: designNameN <CR>

deviceType is the name of the BSDL file for that device
and designName is the name of the design to translate
into SVF. Multiple deviceType:designName pairs are
separated by spaces. For example:

part xc95108:abcl2 xc95144 :wxyz

This command defines the JTAG device chain, from one
to any number of devices. The parts specified in the
part command should be arranged in order beginning
with the first device to receive TDI and ending with the
last device to output TDO.

Note: For any non-XC9500 part in the JTAG chain
make certain that the BSDL file for the specified part is
available along the XACT path and is called device-
Type.bsd.

. Enter any one of the foliowing commands:

[&)]

* erase designName — generates an SVF file for the bit
sequence needed to erase the specified part.

» verify designName [-] jedecFileName] — generates
an SVF file that specifies the bit sequence to read back
the device contents and compare it against the contents
of the specified JEDEC file.

« program [-v] designName [-] jedecFileName] —
generates an SVF file that specifies the bit sequence to
program the specified part from a JEDEC file named
designName.jed (or alternately, the JEDEC file name
specified after the “-j”). The program command option
add the following functionality:

-v — Follow up the programming operation with a read-
back verification against the contents of the JEDEC file.

6. Exit EZTag by entering the following command:
Qquit
NOTE: The SVF file will be named designName.svf,
and will be created in the current working directory (the
directory in which EZTAG is being run). Consecutive
operations on the same designName file will overwrite
the SVF file each time. The SVF file contains all data

and commands necessary to perform the specified
function.

7. Use the svf2xsvf tool to translate the ASCII SVF file into
a more compact binary XSVF format. XSVF files are
approximately 80% smaller than SVF files. To perform
the conversion, enter the following command at the sys-
tem prompt:

svi2xsvf svf file name xsvf file_ name

Note: The svf2xsvf translator supports only SDR, SIR,
and RUNTEST instructions in the source SVF file.

The XSVF file now contains both the programming data
and instructions, ready for use by the 8051 microcontroller.

EPROM Programming

To program an EPROM, the binary XSVF file must be con-
verted to an Intel Hex or similar PROM format file. Most
embedded processor development system software will
automatically convert included binary files to the appropri-
ate format. Public domain file conversion software is also
available, as shown in Appendix D.

Software Limitations

EZTAG can generate SVF files only for devices for which
JEDEC files can be created. Designers should verify that
the development software they are using can create
JEDEC files for the specific devices they intend to use.

The current software can only generate SVF files for oper-
ations on one part at a time. If there are several parts to be
programmed, additional program commands must be exe-
cuted — one for each part, creating multiple SVF files. In
each SVF file, one device will be programmed while the
others are held in bypass mode.

Hardware Design

As shown in Figure 1, this design requires only an 8051
microcontroller, an address latch, and enough EPROM or
RAM to contain both the 8051 code and the CPLD pro-
gramming data.

Hardware Design Description

The 8051 allows 64K of program and 64K of data space;
much more than is needed in this application. However the
ability to separate address and data space is used to sim-
plify the addressing scheme.

The 8051 multiplexes port O for both data and addresses.
The ALE signal causes the 74x373 to latch the low order
address, and the high order address is output on port 2.
Port 0 then floats, allowing the selected EPROM to drive
the data inputs. Then the PSEN signal goes low to activate
an 8051 program read operation, or the RD signal goes low
to activate a CPLD programming data read operation.

Estimated EPROM Memory Requirements

Table 1 shows the estimated EPROM capacity needed to
contain both the 8051 code and the XC9500 programming
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data. The XSVF file sizes are shown for an erase and pro-
gram operation.

Table 1: XSVF File Sizes

Device Type XSVF File Size C-Code |Total
XC9536 5194 7k 12K
XC9572 11674 Sk ek
XC95108 19598 7k |27K
XC95144 112960 (estimated) |7k 20K
XC95180 16200 (estimated) |7k 23K
XC95216  |26390 7k 33K
XC95288  [34560 (estimated) |7k 42K

The XSVF file sizes are dependent only on the device type,
not on the design implementation. If further compression of
the XSVF file is needed, a standard compression tech-
nique, such as Lempel-Ziv can be used.

Modifications for Other Applications

The design presented in this application note is for a stand-
alone ISP controller. However, it is also possible to apply
these techniques to microcontrollers that may already exist
within a design. To implement this design in an already
existing microcontroller, all that is needed is four 1/O pins to
drive the TAP, and enough storage space to contain both
the controller program and the CPLD download data. In
addition, care must be taken to preserve the JTAG port tim-
ing.

The TAP timing in this design is dependent on the 8051
clock. For other 8051 clock frequencies or for different
microcontrollers, the timing must be calculated accordingly,
in order to implement the timing specified in Figure 5.

Using a different microcontroller would require changing
the 1/O subroutine calls while preserving the correct TAP
timing relationships. These subroutine calls are located in
the ports.c file. All other C-code is independent of the
microcontroller and will not need to be modified.

RAM can be used instead of the EPROM in this design.
This would allow the XC9500 devices to be programmed
and tested remotely via modem, using remote control soft-
ware written by the user.

Debugging Suggestions

The following suggestions may be helpful in testing this
design:

* View the contents of the XSVF file using the xsvf2ascii
converter. This will decode the binary file and display
the XSVF data and instructions. To run this converter,
enter the following command at the system prompt:

xsvfascii
* Change the #define DEBUG_MODE 0 to #define

DEBUG_MODE 1 in the ports.h file to see the
calculated values of the TDI and TMS ports on the

rising edge of TCK, when the code is compiled. Use this
to verify the functionality of the C-code if it is ported to a
different microcontroller. (See Appendix C for more
information.)

¢ Use the ASCII text output, generated by xsvf2ascii, to
verify that the bit sequence output of the microcontroller
is correct.

¢ Decrease the TCK frequency to test that the wait times
for program and erase are sufficiently long.

* Make certain that the function pins go into a 3-state
condition in ISP mode.

* Test that the function pins initialize when ISP mode is
terminated with the ISPEX command.

* Verify that the devices which are not being programmed
are in bypass mode. Bypass mode causes TDO to be
the same as TDI, delayed by one TCK clock pulse.

Firmware Design

The flow chart for the C-Code is shown in Figure 3. This
code continuously reads the instructions and arguments
from the XSVF file contained in the XC9500 program data
EPROM and branches in one of three ways based on the
three possible XSVF instructions (XRUNTEST, XSIR,
XSDR) as described in Appendix B.

When the C-Code reads an XRUNTEST instruction, it
reads in the next four bytes of data that specify the number
of microseconds for which the device will stay in the Run-
Test/Idle state before the next XSIR or XSDR instruction is
executed. The runTestTimes variable is used to store this
value.

When the C-Code reads an XSIR instruction, it provides
stimulus to the TMS and TCK ports until it arrives in the
Shift-IR state. It then reads a byte that specifies the length
of the data and the actual data itself, outputting the speci-
fied data on the TDI port. Finally, when all the data has
been output to the TDI port, the TMS value is changed and
successive TCK pulses are output until the Run-Test/Idle
state is reached again.

When the C-Code reads an XSDR instruction, it reads the
data specifying the values that will be output during the
Shift-DR state. The code then toggles TMS and TCK
appropriately to transition directly to the Shift-DR state. It
then holds the TMS value at 0 in order to stay in the Shift-
DR state and the data from the XSVF file is output to the
TDI port while storing the data received from the TDO port.
After all the data has been output to the TDI port, TMS is
set to 1 in order to move to the Exit-1-DR state. Then, the
TDO input value is compared to the TDO expected value. If
the two values fail to match, the exception handling proce-
dure is executed as shown in Figure 6. If the TDO input val-
ues match the expected values, the code returns to the
Run-Test/Idle state and waits for the amount of time speci-
fied by the runTestTimes variable (which was originally set
in the XRUNTEST instruction).
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Core XSTREAM Software Flow

XRUNTEST XSDR

XSIR

R-Scan

Shift-DR

Figure 3: Flow Chart for the ISP Controller Code
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Shift-DR

Update-DR

Run/Test/ldle

Figure 3: Continued
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Exit1-DR

Exit Program Pause-DR

Exit2-DR

Shift-DR

Exit1-DR

Update-DR

Figure 3: Continued
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Shift-IR

Update-IR

Run/Test/ldle

Figure 3: Continued
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Set TMS to 0, puise
TCK.

T 7

Figure 3: Continued

Memory Map

The 8051 memory map is divided into two 64K byte blocks:
one for the 8051 program and one for data. The 8051 pro-
gram memory resides in the 8051 program block and is
enabled by the PSEN signal. The XC9500 CPLD program
memory resides in the 8051 data block and is enabled by
the RD signal.

Port Map

The 8051 I/O ports are used to generate the memory
address and the TAP signals, as shown in Figure 1. Port 1
of the 8051 is used to control the TAP signals; Table 2
shows the port configuration.

Table 2: 8051 Port 1 Mapping

| _TAPPIn Port1 Bit | Configured as

| TCK 0 ‘ Input

[ ~TMS # 1 | iput
i ~__TDi 2 ~ Input

| IDO 3 Output

|
|

Increment Loop.

Run/TesvlIdle

Loop <

“_CLOCKRUNTESTS

7

v _F

|
|

TAP Timing

Figure 5 shows the timing relationships of the TAP signals.
The C-code running on the 8051 insures that the TDI and
TMS values are driven at least two instruction cycles before
asserting TCK. At that same time, TDO can be strobed.

Parts of the XSVF file specify wait times during which the
device programs or erases the specified location or sector.
Implementation of the wait timer can be accomplished
either by software loops that depend on the processor’s
cycle time or by using the 8051’s built-in timer function. In
this design, timing is established through software loops in
the ports.c file.

January, 1997 (Version 1.0)
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TAP AC Parameters

Table 3 shows the timing parameters for the TAP wave-
forms, shown in Figure 5.

Table 3: Test Access Port Timing Parameters (ns.)

Symbol |  Parameter | Min | Max |
TCKMIN | TCK Minimum Clock Period 100 |
TMSS [TMSSewpTme [ 10| |
TMSH TMS Hold Time 10
TDIS TDI Setup Time 15 | *
TOH  [TidodTme 25 |
TDOZX |TDO Float to Valid Delay 35
TDOXZ |TDI Valid to Float Delay | a5 |
TDOV  [TDO Valid Delay ; 35 |
TINS 1/0 Setup Time 15 |
TINH  [/OHold Time 30 |
TIOV [EXTEST Output Valid Delay 55 |

XC9500 Programming Algorithm

This section describes the programming algorithm exe-
cuted by the 8051 C-code that reads the XSVF file; this
code is contained in the micro.c file in Appendix C. This

information is valuable to users who want to modify the C-
code for porting to other microcontrollers.

The XSVF file contains all XC9500 programming instruc-
tions and data. This allows the TAP driver code to be very
simple. The 8051 interprets the XSVF instructions that
describe the CPLD design and then outputs the TAP sig-
nals for programming (and testing) the XC9500 device. The
command sequence for device programming is shown in
Figure 4.

Set ISP Mode ISPEN
| Erase All Sectors|  FERASE
|Program All Addresses| FPGM

| Verify Programming |  FVFY (optional)

Exit ISP Mode and

Initialize Device ISPEX

Figure 4: Device Programming Flow

TCKMIN
~ - :
TCK ‘/j_/:w
' TMSS! TMSH : |
I
U — - ,
TS X X4 ~
TDIS | TDIH \ '
i i , :
| 1
ol XX |
TDOZX l T TDOV | TDOXZ
- -
I
TDO - ! >< : >——
! 1 r 1 . |
TINS | TINH | T
- L .
Input-/O-CLK >< | >< : :
! I ! f TIOV \

/0

X

Figure 5: Test Access Port Timing

|
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Exception Handling

Figure 6 shows the state diagram for the internal device
programming state machine, as defined by the IEEE
1149.1 standard. The C-code drives the 1149.1 TAP con-
troller through the state sequences to load data and
instructions, and capture results. One of the key functions
performed by the C-code is the TAP controller state transi-
tion sequence that is executed when a program or erase
operation needs to be repeated, which may occur on a
small percentage of addresses. If a sector or address
needs to be re-programmed or re-erased, the device status
bits return a value that is different from that which is pre-
dicted in the XSVF file. In order to retry the previous (failed)
data, the following 1149.1 TAP state transition sequence is
followed, if the TDO mismatch is identified at the EXIT1-DR
state:

EXIT1-DR, PAUSE-DR, EXIT2-DR,
EXIT1-DR, UPDATE-DR,

SHIFT-DR,
RUN-TEST/IDLE

The application then waits for the amount of time that was
previously specified by XRUNTEST. The effect of this state
sequence is to re-apply the previous value rather than
apply the new TDI value that was just shifted in.

This “exception handling loop” is attempted no more than
32 times. If the TDO value does not match after 32
attempts, the part is defective and a failure is logged. When
the retry operation is successful, the algorithm shifts-in the
next XSDR data.

Conclusion

XC9500 CPLDs are easily programmed by an embedded
processor. And, because the XC9500 family is 1149.1 com-
pliant, system and device test functions can also be con-
trolled by the embedded processor, in addition to
programming. This capability opens new possibilities for
upgrading designs in the field, creating user-specific fea-
tures, and remote downloading of CPLD programs.

1 0

Y

Update-DR

Select-IR-Scan
0

Y

Figure 6: TAP State Machine Flow

Note: The values shown adjacent to each transition represent the signal present at TMS during the rising edge of TCK.
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Appendix A

SVF File Format for the XC9500 Family

SVF Overview

This appendix describes the Serial Vector Format syntax,
as it applies to the XC9500 family; only those commands
and command options that apply to XC9500 devices are
described. An SVF file is the media for exchanging descrip-
tions of high-level IEEE 1149.1 bus operations which con-
sist of scan operations and movements between different
stable states on the 1149.1 state diagram (as shown in
Figure 6). SVF does not explicitly describe the state of the
1149.1 bus at every Test Clock (TCK).

An SVF file contains a set of ASCII statements. Each state-
ment consists of a command and its associated parame-
ters, terminated by a semicolon. SVF is case sensitive, and
comments are indicated by an exclamation point (!).

Scan data within a statement is expressed in hexadecimal
and is always enclosed in parenthesis. The scan data can-
not specify a data string that is larger than the specified bit
length; the Most Significant Bit (MSB) zeros in the hex
string are not considered when determining the string
length. The bit order for scan data defines the LSB (right-
most bit) as the first bit scanned into the device for TDI and
SMASK scan data, and is the first bit scanned out for TDO
and MASK data.

SVF Commands

The following SVF Commands are supported by the
XC9500 Family:

* SDR (Scan Data Register).
¢ SIR (Scan Instruction Register).
e RUNTEST.

For each of the following command descriptions:

¢ The parameters are mandatory.

* Optional parameters are enclosed in brackets ([ ]).

* Variables are shown in italics.

* Parenthesis “( )"are used to indicate hexadecimal
values.

* A scan operation is defined as the execution of an SIR
or SDR command and any associated header or trailer

SDR, SIR

SDR length TDI (tdi) SMASK (smask)
[TDO (tdo) MASK (mask)];:

SIR length TDI (tdi) TDO SMASK (smask);

These commands specify a scan pattern to be applied to
the target scan registers. The SDR command (Scan Data
Register) specifies a data pattern to be scanned into the

target device Data Register. The SIR command (Scan
Instruction Register) specifies a data pattern to be scanned
into the target device Instruction Register.

Prior to scanning the values specified in these commands,
the last defined header command (HDR or HIR) will be
added to the beginning of the SDR or SIR data pattern and
the last defined trailer command (TDR or TIR) will be
appended to the end of the SDR or SIR data pattern.

Parameters:

length — A 32-bit decimal integer specifying the number of
bits to be scanned.

[TDI (tdi)] — (optional) The value to be scanned into the
target, expressed as a hex value. If this parameter is not
present, the value of TDI to be scanned into the target
device will be the TDI value specified in the previous SDR/
SIR statement. If a new scan command is specified, which
changes the length of the data pattern with respect to a pre-
vious scan, the TDI parameter must be specified, otherwise
the default TDI pattern is undetermined and is an error.

[TDO (tdo)] — (optional) The test values to be compared
against the actual values scanned out of the target device,
expressed as a hex string. If this parameter is not present,
no comparison will be performed. If no TDO parameter is
present, the MASK will not be used.

[MASK (mask)] — (optional) The mask to be used when
comparing TDO values against the actual values scanned
out of the target device, expressed as a hex string. A “0” in
a specific bit position indicates a “don’t care” for that posi-
tion. If this parameter is not present, the mask will equal the
previously specified MASK value specified for the SIR/SDR
statement. If a new scan command is specified which
changes the length of the data pattern with respect to a pre-
vious scan, the MASK parameter must be specified, other-
wise the default MASK pattern is undefined and is an error.
If no TDO parameter is present, the MASK will not be used.

[SMASK (smask)] — (optional) Specifies which TDI data
is “don’t care”, expressed as a hex string. A “0” in a specific
bit position indicates that the TDI data in that bit position is
a “don’t care”. If this parameter is not present, the mask will
equal the previously specified SMASK value specified for
the SDR/SIR statement. If a new scan command is speci-
fied which changes the length of the data pattern with
respect to a previous scan, the SMASK parameter must be
specified, otherwise the default SMASK pattern used is
undefined and is an error. The SMASK will be used even if
the TDI parameter is not present.

January, 1997 (Version 1.0)
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Example:

SDR 27 TDI (008003fe) SMASK (07ffffff)
TDO (00000003) MASK (00000003) ;

SIR 16 TDO (ABCD);

RUNTEST
RUNTEST run_count TCK;

This command forces the target 1149.1 bus to the Run-
Test/Idie state for a specific number of microseconds, then

moves the target device bus to the IDLE state. This is used
to control RUNBIST operations in the target device.

Parameters:

run_count — The number of TCK clock periods that the
1149.1 bus will remain in the Run Test/Idle state, expressed
as a 32 bit unsigned number.

Example:
RUNTEST 1000 TCK;

! Begin Test Program

TRST OFF;
ENDIR IDLE;
HIR

HDR 16 TDI (FFFF) TDO (FFFF) MASK (FFFF);
TIR

TDR

SIR

SDR

STATE

RUNTEST

!End test program

!disable test reset line
'End IR scan in IDLE

116 bit DR Header

Figure 7: Sample SVF File
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Appendix B

XSVF File Format and Conversion Utilities

This appendix includes the following reference information:

¢ The XSVF Commands — The insiructions that are

supported, their arguments, and definitions.

* The svf2xsvt Utility — Converts the standard SVF file
format to the more compact binary XSVF format.

» The xsvf2ascii Utility — Converts the XSVF file format
to ascii text for debugging purposes.

XSVF Commands

The following commands describe the 1149.1 operations in
a way that is similar to the SVF syntax. The key difference
between SVF and XSVF is that the XSVF file format affords
better data compression and therefore produces smaller
files.

The format of the XSVF file is a one byte instruction fol-
lowed by a variable number of arguments (as described in
the command descriptions below). The binary (hex) value
for each instruction is shown in Table 4:

Table 4: Binary Encoding of XSVF Instructions

XSVF Instruction | Binary Encoding (hex)
XCOMPLETE 0x00
XTDOMASK 0x01
XSIR 0x02
XSDR 0x03
XRUNTEST 0x04
XREPEAT 0x07
XSDRSIZE 0x08
XSDRTDO 0x09
XSETSDRMASKS 0x0a
XSDRINC 0x0b

XTDOMASK

XTDOMASK value<"length" bits>

XTDOMASK sets the TDO mask which masks the value of
all TDO values from the SDR instructions. Length is defined
by the last XSDRSIZE instruction. XTDOMASK may be
used multiple times in the XSVF file if the TDO mask

changes for various SDR instructions.

Example:
XTDOMASK 0x00000003

This example defines that TDOMask is 32 bits long and
equals 0x00000003

XREPEAT
XREPEAT times<l byte>

Defines the number of times that TDO will be tested against
the expected value before the ISP operation will be consid-
ered a failure. By default, a device may fail an XSDR
instruction 32 times before the ISP operation is terminated
as a failure. This instruction is optional.

Example:
XREPEAT OxO0f
This example sets the command repeat value to 15.

XRUNTEST
XRUNTEST time<4 bytes>

Defines the amount of time (in microseconds) the device
should sit in the Run-Test/Idle state after each visit to the
SDR state.

Example:
XRUNTEST 0x00000£fa0
This example specifies an idle time of 4000 microseconds.

XSIR

XSIR length<l byte> TDIValue<"length"
bits>

Go to the Shift-IR state and shift in the TDIValue.
Example:
XSIR 0x08 Oxec

XSDR
XSDR TDIValue<"length" bits>

Go to the Shift-DR state and shift in TDIValue; compare the
TDOExpected value from the last XSDR instruction against
the TDO value that was shifted out (use the TDOMask
which was generated by the last XTDOMASK instruction).
Length comes from the XSDRSIZE instruction.

If the TDO value does not match TDOExpected, return to
the Run-Test/Idle state again, and wait the amount of time
last specified by the XRUNTEST command, then try the
SIR instruction again. If TDO is wrong more than the maxi-
mum number of times specified by the XREPEAT instruc-
tion, then the ISP operation will be determined to have

failed.
Example:
XSDR 02c003fe

January, 1997 (Version 1.0)

1-29




XC9500 In-System Programming Using an Embedded Microcontroller

XSDRSIZE

XSDRSIZE length<4 bytes>

Specifies the length of all XSDR/XSDRTDO records that
follow.

Example:
XSDRSIZE 0x0000001b

This example defines the length of the following XSDR/
XSDRTDO arguments to be 27 bits (4 bytes) in length.

XSDRTDO

TDIValue<"length" bits>
TDOExpected<"length" bits>

Go to the Shift-DR state and shift in TDIValue; compare the
TDOExpected value against the TDO value that was
shifted out (use the TDOMask which was generated by the
last XTDOMASK instruction). Length comes from the
XSDRSIZE instruction.

If the TDO value does not match TDOExpected, return to
the Run-Test/Idle state again, and wait the amount of time
last specified by the XRUNTEST command, then try the
SIR instruction again. If TDO is wrong more than the maxi-
mum number of times specified by the XREPEAT instruc-
tion, then the ISP operation will be determined to have
failed.

The TDOExpected Value will be used in all successive
XSDR instructions until the next XSDR instruction is given.

Example:
XSDRTDO 0x000007fe 0x00000003

For this example, go to the Shift-DR state and shift in
0x000007fe. Perform a logical AND on the TDO shifted out
and the TDOMASK from the last XTDOMASK instruction
and compare this value to 0x00000003.

XSETSDRMASKS

XSETSDRMASKS addressMask<"length" bits>
dataMask<"length" bits>

Set SDR Address and Data Masks. The address and data
mask of future XSDRINC instructions are indicated using
the XSETSDRMASKS instructions. The bits that are 1 in
addressMask indicate the address bits of the XSDR
instruction; those that are 1 in dataMask indicate the data
bits of the XSDR instruction. "Length" comes from the
value of the last XSDRSize instruction.

Example:
XSETSDRMASKS 00800000 000003fc

XSDRINC

XSDRINC startAddress<"length" bits>
numTimes<1l byte> data[l]<"length2" bits>
...data[numTimes] <"length2" bits>

Do successive XSDR instructions. Length is specified by
the last XSDRSIZE instruction. Length2 is specified as the
number of 1 bits in the dataMask section of the last XSETS-
DRMASKS instruction.

The startAddress is the first XSDR to be read in. For num-
Times iterations, increment the address portion (indicated
by the addressMask section of the last XSETSDRMASKS
instruction) by 1, and load in the next data portion into the
dataMask section.

Note that an XSDRINC <start> 255 data0 data1 ... data255
actually does 256 SDR instruction since the start address
also represents an SDR instruction

Example:
XSDRINC 004003fe 05 ff £f £f £f £f

XCOMPLETE
XCOMPLETE

End of XSVF file reached.

Example:

XCOMPLETE

svf2xsvf File Conversion Utility

This executable reads in an SVF file (generated by EZTag)
and generates an XSVF file.

Usage:

svf2xsvf [-nc] [-r number] <filel>
<file2>

file1: SVF input file name.
file2: XSVF output file name.

Options:

-nc — No compression. Don't use the XSETSDRMASKS
and XSDRINC instructions.

-r number — Set the XREPEAT value to number

xsvf2ascii File Conversion Utility

This executable reads in an XSVF file (generated by
svf2xsvf) and outputs the XSVF commands contained in
the file. It is useful for debugging.

Usage:
xsvf2ascii <filel> <file2>

file1: XSVF input file name.
file2: ascii output file name.
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Appendix C
C-Code Listing

The following files contain the C source code used to read
an XSVF file and output the appropriate Test Access Port
control bits:

C-Code Files

* lenval.c — This file contains routines for using the
lenVal data structure.

¢ micro.c — This file contains the main function call for
reading in a file from an EPROM and driving the JTAG
signals.

* ports.c — This file contains the routines to output
values on the JTAG ports, to read the TDO bit, and to
read a byte of data from the EPROM.

Header Files

* lenval.h — This file contains a definition of the lenVal
data structure and extern procedure declarations for
manipulating objects of type lenVal. The lenVal
structure is a byte oriented type used to store an
arbitrary length binary value.

¢ ports.h — This file contains extern declarations for
providing stimulus to the JTAG ports.

To compile this C-code for a microcontroller other than the
8051, only four functions within the ports.c file need to be
modified:

* setPort — Sets a specific port on the microcontroller to
a specified value.

* readTDOBit — Reads the TDO port.

* readByte — Reads a byte of data from the XSVF file.

* waitTime — Pauses for a specified amount of time.

For help in debugging the code, a compiler switch called
DEBUG_MODE is provided. This switch allows the
designer to simulate the TAP outputs in a PC environment.
If DEBUG_MODE is defined, the software reads from an
XSVF file (which must be named prom.bit) and prints the
calculated value of the microcontroller’s 1/0 ports (TDI and
TMS) on each rising edge of TCK. Because the TDO value
cannot be read during DEBUG_MODE, the software
assumes that the TDO value is correct. This function pro-
vides a simulation of the TAP signals that can be used to
verify the actual operation.

JREKI KKK KKk AR KA KKKk khhkkkkkkhkhkhkkkkkkkkhhkk ok kkkkk*k /

/* file: lenval.c */
/* abstract: This file contains routines for using */
/* the lenval data structure. */

/% Kk ok sk ok ok ok ok kK ok ok K ok o K Kk kK ok ok ok kK ok ok ok Kk K ok ok kK K ok ok ok ok ok ok ok ok ok ok ok /

#include "lenval.h"

#include "ports.h" /* for DEBUG_MODE define */

/* return the value represented by this lenval */

long value(lenvVal *x)
{
int 1i;
long result=0;
for (i=0;i<x->len;i++)
{
result=result<<8;
result+=x->val(i];
}
return result;

}

/* set x to value; assumes value<512 */
void initLenVal (lenval *x, long value)
{

x->len=1;

x->val[0]=(unsigned char) value;

/* result to hold the accumulated result */

/* shift the accumulated result */
/* get the last byte first */

January, 1997 (Version 1.0)
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/* return TRUE iff actual=expected (after masking out some bits using mask */
short EquallLenvVal(lenvVal *expected, lenvVal *actual, lenVal *mask)
{
int 1i;
#ifdef DEBUG_MODE
/* since we can't read TDO, just assume TDO matches whatever is expected */
return 1;
#endif
for (i=0;i<expected->len;i++)

{

unsigned char byteVall=expected->vall[i]; /* i'th byte of expected */
unsigned char byteVal2=actual->vall[i]; /* i'th byte of actual */
bytevall &= mask->vall[i]; /* mask out expected */
byteval2 &=mask->val[i]; /* mask out actual */
if (bytevall!=byteval2)
return 0; /* values are not equal */
}
return 1; /* values are equal */

/* return the (byte, bit) of lv (reading from left to right) */
short RetBit(lenvVal *1lv, int byte, int bit)
{
int i;
unsigned char ch=lv->val[byte]; /* get the correct byte of data */
unsigned char mask=128; /* 10000000 */
for (i=0;i<bit;i++)
mask=mask>>1; /* mask the correct bit of the byte */
return ((mask & ch) !=0); /* return 1 if the bit is 1, 0 otherwise */

/* set the (byte, bit) of 1lv equal to val (e.g. SetBit("00000000",byte, 1)
equals "01000000" */
void SetBit(lenval *1lv, int byte, int bit, short val)
{
int 1i;
unsigned char *ch=&(lv->val[byte]);
unsigned char OrMask=1, AndMask=255;
for (i=0;i<7-bit;i++)
OrMask=0rMask<<1;
AndMask-=0rMask;
*ch = *ch & AndMask; /* 0 out the bit */

if (val)
*ch = *ch | OrMask; /* £ill in the bit with the correct value */
}
/* add vall to val2 and store in resVal; */

/* assumes vall and val2 are of equal length */
void addval (lenval *resval, lenval *vall, lenVal *val2)
{

unsigned char carry=0;

short i;
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resVal->len=vall->len; /* set up length of result */

/* start at least significant bit and add bytes x/

for (i=vall->len-1;i>=0;1i--)

{
unsigned char vl=vall->val([i]; /* i'th byte of vall */
unsigned char v2=val2->val[i]; /* i'th byte of val2 */
/* add the two bytes plus carry from previous addition */
unsigned char res=vl+v2+carry;
/* set up carry for next byte */
if (vli+v2+carry>255)

carry=1; /* carry into next byte */
else
carry=0;
resVal->val[i]=res; /* set the i'th byte of the result */

/* read from XSVF numBytes bytes of data into x */
void readval (lenval *x, short numBytes)

{

int i;
for (i=0;i<numBytes;i++)

readByte (& (x->val[i]l)); /* read a byte of data into the lenvVal */
x->len=numBytes; /* set the length of the lenVal */
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/* file: lenval.h */
/* abstract: This file contains a description of the */
/* data structure "lenval". */

/*******************************************************/

#ifndef lenval_dot_h
#define lenval_dot_h

/* the lenVal structure is a byte oriented type used to store an */

/* arbitrary length binary value. As an example, the hex value */
/* 0x0e3d is represented as a lenVal with len=2 (since 2 bytes */
/* and vall[0]=0e and val[l]=3d. wval[2-MAX_LEN] are undefined */
/* maximum length (in bytes) of value to read in */
/* this needs to be at least 4, and longer than the */

/* length of the longest SDR instruction. If there is, */
/* only 1 device in the chain, MAX_LEN must be at least */

/* ceil(27/8) == 4. For 6 devices in a chain, MAX_LEN */
/* must be 5, for 14 devices MAX_LEN must be 6, for 20 */
/* devices MAX_LEN must be 7, etc.. */
/* You can safely set MAX_LEN to a smaller number if you*/
/* know how many devices will be in your chain. */

#define MAX_LEN 4

typedef struct var_len_byte
{

short len; /* number of chars in this wvalue */
unsigned char val[MAX_LEN+1]; /* bytes of data */
} lenval;

/* return the long representation of a lenval */
extern long value(lenval *x);

/* set lenval equal to value */
extern void initLenvVal (lenval *x, long value);

/* check if expected equals actual (taking the mask into account) */
extern short EgqualLenvVal (lenvVal *expected, lenVal *actual, lenvVal *mask);

/* add vall+val2 and put the result in resval */
extern void addval (lenVal *resvVal, lenval *vall, lenval *vall);

/* return the (byte, bit) of lv (reading from left to right) */
extern short RetBit(lenval *1lv, int byte, int bit);

/* set the (byte, bit) of 1lv equal to val (e.g. SetBit("00000000",byte, 1)
equals "01000000" */
extern void SetBit (lenvVal *1lv, int byte, int bit, short val);

/* read from XSVF numBytes bytes of data into x */
extern void readval (lenvVal *x, short numBytes);

#endif
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/********************************************t****************/

/* file: micro.c */
/* abstract: This file contains the main function */
/* call for reading in a file from a prom */
/* and pumping the JTAG ports. */
/* */
/* Notes: There is a compiler switch called DEBUG_MODE. */
/* If DEBUG_MODE is defined, the compiler will read */
/* the xsvf file from a file called "prom.bit". */
/* It will also enable debugging of the code */
/* by printing the TDI and TMS values on the */
/* rising edge of TCLK. */

/************t**********************t*t***********************/

#include "lenval.h"
#include "ports.h"

#define CLOCK_RATE 150 /* set to be the clock rate of the system in kHz */
/* encodings of xsvf instructions */

#define XCOMPLETE
#define XTDOMASK
#define XSIR

#define XSDR

#define XRUNTEST
#define XREPEAT
#define XSDRSIZE
#define XSDRTDO
#define XSETSDRMASKS
#define XSDRINC

2 W oo dd WP o

= O

/* return number of bytes necessary for "num" bits */
#define BYTES (num) \
(((num%8)==0) ? (num/8) : (num/8+1))

extern void doSDRMasking(lenvVal *dataVal, lenVal *nextData,
lenvVal *addressMask, lenvVal *dataMask) ;
extern short loadSDR(int numBits, lenVal *dataval, lenVal *TDOExpected,
lenval *TDOMask) ;
extern void clockOutLenVal (lenVal *1v,long numBits, lenval *tdoStore);
extern void gotoIdle();

lenVal TDOMask; /* last TDOMask received */
lenvVal maxRepeat; /* max times tdo can fail before ISP considered failed */
lenval runTestTimes; /* value of last XRUNTEST instruction */

#ifdef DEBUG_MODE

#include <stdio.h>

FILE *in; /* for debugging */
#endif
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/* clock out the bit onto a particular port */

void clockOutBit (short p, short val)

{
setPort(p,val); /* change the value of TMS or TDI */
pulseClock() ; /* set TCK to Low->High->Low */

/* clock out numBits from a lenVal; the least significant bits are */
/* output on the TDI line first; exit into the exit(DR/IR) state. */
/* if tdoStore!=0, store the TDO bits clocked out into tdoStore. */
void clockOutLenVal (lenval *1lv,long numBits,lenvVal *tdoStore)
{

int i;

short j, k;

/* if tdoStore is not null set it up to store the tdovalue */
if (tdoStore)
tdoStore->len=1v->len;

for (i=0;i<lv->len;i++)
{
/* nextByte contains the next byte of lenVal to be shifted out */
/* into the TDI port */
unsigned char nextByte=lv->val[lv->len-i-1];
unsigned char nextReadByte=0;
unsigned char tdoBit;
/* on the last bit, set TMS to 1 so that we go to the EXIT DR */
/* or to the EXIT IR state */
for (j=0;3j<8;j++)
{
/* send in 1 byte at a time */
/* on last bit, exit SHIFT SDR */
if (numBits==1)
setPort (TMS,1) ;

if (numBits>0)
{

tdoBit=readTDOBit(); /* read the TDO port into tdoBit */
clockOutBit (TDI,nextByte & 0x1); /* set TDI to last bit */
nextByte=nextByte>>1;

numBits--;

/* first tdoBit of the byte goes to 0x00000001 */

/* second tdoBit goes to 0x00000010, etc. */

/* Sshift the TDO bit to the right location below */
for (k=0;k<j;k++)
tdoBit=tdoBit<<1;

/* store the TDO value in the nextReadByte */
nextReadByte|=tdoBit;

}
/* if storing the TDO value, store it in the correct place */
if (tdoStore)

tdoStore->val [tdoStore->len-i-1]=nextReadByte;
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/* parse the xsvf file and pump the bits */
int main()
{
lenval inst; /* instruction */
lenVal bitLengths; /* hold the length of the arguments to read in */
lenval dataVal, TDOExpected;
lenvVal SDRSize,addressMask,dataMask;
lenval sdrInstructs;
long i;

#ifdef DEBUG_MODE
/* read from the file "prom.bit" instead of a real prom */
in=fopen("prom.bit", "rb");
#endif
gotoIdle();
while (1)
{

readval (&inst,1); /* read 1 byte for the instruction */
switch (value(&inst))
{
case XTDOMASK:
/* read in new TDOMask */
readval (&TDOMask, BYTES (value (&SDRSize))) ;
break;
case XREPEAT:
/* read in the new XREPEAT value */
readval (&maxRepeat, 1) ;
break;
case XRUNTEST:
/* read in the new RUNTEST value */
readval (&runTestTimes, 4) ;

break;

case XSIR:
/* load a value into the instruction register */
clockOutBit (TMS,1); /* Select-DR-Scan state */
clockOutBit (TMS,1); /* Select-IR-Scan state */
clockOutBit (TMS,0); /* Capture-IR state */
clockOutBit (TMS,0); /* shift-IR state */

readval (&bitLengths,1); /* get number of bits to shift in */
/* store instruction to shift in */

readval (&dataval, BYTES (value (&bitLengths))) ;

/* send the instruction through the TDI port and end up */

/* dumped in the Exit-IR state */
clockOutLenval (&dataval, value (&bitLengths),0) ;

clockOutBit (TMS,1); /* Update-IR state */

clockOutBit (TMS,0); /* Run-Test/Idle state */

break;

case XSDRTDO:
/* get the data value to be shifted in */
readVal (&dataval, BYTES (value (&SDRSize))) ;
/* store the TDOExpected value */
readVal (&TDOExpected, BYTES (value (&SDRSize))) ;
/* shift in the data value and verify the TDO value against */
/* the expected value */
if (!loadSDR(value(&SDRSize), &dataVal, &TDOExpected, &TDOMask))
{
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/* The ISP operation TDOs failed to match expected */
return 0;
}
break;
case XSDR:
readval (&dataVal, BYTES (value (&SDRSize))) ;
/* use TDOExpected from last XSDRTDO instruction */
if (!loadSDR(value(&SDRSize), &dataVal, &TDOExpected, &TDOMask))
return 0; /* TDOs failed to match expected */
break;
case XSDRINC:
readval (&dataVal, BYTES (value (&SDRSize))) ;
if (!loadSDR(value(&SDRSize), &dataVal, &TDOExpected, &TDOMask))
return 0; /* TDOs failed to match expected */
readval (&sdrInstructs, 1) ;
for (i=0;i<value(&sdrInstructs);i++)
{
lenval nextData;
int dataLength=8; /* fix to be number of 1's in dataMask */
readval (&nextData, BYTES (dataLength) ) ;
doSDRMasking (&dataval, &nextData, &addressMask, &dataMask);
if (!loadSDR(value (&SDRSize), &dataVal,
&TDOExpected, &TDOMask))
return 0; /* TDOs failed to match expected */
}
break;
case XSETSDRMASKS:
/* read the addressMask */
readval (&addressMask, BYTES (value (&SDRSize))) ;

/* read the dataMask */
readvVal (&dataMask, BYTES (value (&SDRSize))) ;
break;

case XCOMPLETE:
/* return from subroutine */
return 1;
break;

case XSDRSIZE:
/* set the SDRSize value */
readval (&SDRSize, 4) ;

break;
}
}
}
/* determine the next data value from the XSDRINC instruction and store */
/* it in dataval. */
/* Example: dataVal=0x01ff, nextData=0xab, addressMask=0x0100, */
/* dataMask=0x00ff, should set dataval to 0x02ab */

void doSDRMasking(lenVal *dataVal, lenVal *nextData, lenval *addressMask,
lenvVal *dataMask)

int i,3j,count=0;
/* add the address Mask to datavVal and return as a new dataval */
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addval (dataval, dataVal, addressMask) ;
for (i=0;i<dataMask->len;i++)

{

/* look through each bit of the dataMask. If the bit is */
/* 1, then it is data and we must replace the corresponding*/
/* bit of dataval with the appropriate bit of nextData */
for (j=0;3j<8;j++)

if (RetBit(dataMask,i,j)) /* this bit is data */

{
/* replace the bit of dataval with a bit from nextData */
SetBit (dataval, i, j,RetBit (nextData, count/8,count%8));
count++; /* count how many bits have been replaced */

/* goto the idle state by setting TMS to 1 for 5 clocks, followed by TMS */
/* equal to 0 */
void gotoIdle()
{

int i;

setPort (TMS, 1) ;

for (i=0;i<5;1i++)

pulseClock() ;
setPort (TMS, 0) ;
pulseClock() ;

/* return 0 iff the TDO doesn't match what is expected */
short loadSDR(int numBits, lenVal *datavVal, lenVal *TDOExpected,
lenval *TDOMask)

int failTimes=0;
while (1)
{
lenVal actualTDO;
int repeat; /* to do RUNTESTS */

clockOutBit (TMS,1); /* Select-DR-Scan state */
clockOutBit (TMS,0); /* Capture-DR state */
clockOutBit (TMS,0); /* Shift-DR state */

/* output dataVal onto the TDI ports; store the TDO value returned */
clockOutLenVal (dataval,numBits, &actualTDO) ;
/* compare the TDO value against the expected TDO value */
if (EqualLenVal (TDOExpected, &actualTDO, TDOMask) )
{
/* TDO matched what was expected */
clockOutBit (TMS,1); /* Update-DR state */
clockOutBit (TMS,0); /* Run-Test/Idle state*/

/* wait in Run-Test/Idle state */
waitTime (value (&runTestTimes)) ;

break;

else
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/* TDO did not match the value expected */

failTimes++; /* update failure count */

if (failTimes>value (&maxRepeat))
return 0; /* ISP failed
clockOutBit (TMS,0); /* Pause-DR
clockOutBit (TMS,1); /* Exit2-DR
clockOutBit (TMS,0); /* Shift-DR
clockOutBit (TMS,1); /* Exitl-DR

clockOutBit (TMS,1); /* Update-DR state
clockOutBit (TMS,0); /* Run-Test/Idle state

*/
state
state
state
state

/* wait in Run-Test/Idle state */

waitTime (value (&runTestTimes)) ;

}

return 1;

*/
*/
*/
*/
*/
*/
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/*************************************************‘k****
/* file: ports.c

/* abstract: This file contains the routines to

/* output values on the JTAG ports, to read
/* the TDO bit, and to read a byte of data
/* from the prom

/*

/* Notes: See the notes for micro.c for explanation of
/* the compiler switch "DEBUG_MODE".

[/ % ek ok ke ok ok kK ok kK ok K ok ok ok ok ok ok ke k ok ok ok k ok ok k ok k ke k ke k ok k ok ok Kk ok Kk Kk K

#include "ports.h"

#ifdef DEBUG_MODE
#include "stdio.h"
extern FILE *in;
#endif

#ifdef DEBUG_MODE

/* if in debugging mode, use variables instead of setting the ports */

short pTCK, pTMS, pTDI;
#endif

/* if in debugging mode, then just set the variables */
void setPort (short p,short val)
{
#ifdef DEBUG_MODE
if (p==TCK)
pTCK=val;
if (p==TMS)
pTMS=val;
if (p==TDI)
pTDI=val;
#endif
}

#ifdef DEBUG_MODE
void printPorts()
{
printf ("%d $d\n", pTMS, pTDI) ;
}
#endif

/* toggle tck LHL */
void pulseClock()
{
setPort (TCK,0); /* set the TCK port to low */
setPort (TCK,1); /* set the TCK port to high */
#ifdef DEBUG_MODE

/* if in debugging mode, print the ports on the rising clock edge */

printPorts() ;
#endif;
setPort (TCK,0); /* set the TCK port to low */

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
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/* read in a byte of data from the prom */

void readByte (unsigned char *data)

{

#ifdef DEBUG_MODE
/* pretend reading using a file */
fscanf (in, "%c",data) ;

#endif

}

/* read the TDO bit from port */
unsigned char readTDOBit ()

{
#ifdef DEBUG_MODE

return 1; /* garbage value for now; replace with real port read. */
#endif
}
/* Wait at least the specified number of microsec. */
/* Use a timer if possible; otherwise estimate the number of instructions */

/* necessary to be run based on the microcontroller speed.

For this example */

/* we pulse the TCK port a number of times based on the processor speed. */

void waitTime (long microsec)
{

int repeat;

#define CLOCK_RATE 150 /* set to be the clock rate of the system in kHz */

long clockRunTests=microsec*CLOCK_RATE/1000;
for (repeat=0;repeat<clockRunTests;repeat++)
pulseClock() ;
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/*******************************************************/

/* file: ports.h *x/
/* abstract: This file contains extern declarations */
/* for providing stimulus to the JTAG ports.*/

/***************************************************r***/

#ifndef ports_dot_h
#define ports_dot_h

#if 0

#define DEBUG_MODE /* this line can be enabled in order to read in the xsvf from */

/* a file called "prom.bits" and output the
/* TMS and TDI values on the rising edge of
/* the clock

#endif

/* these constants are used to send the appropriate ports to setPort */
/* they should be enumerated types, but some of the microcontroller */
/* compilers don't like enumerated types */

#define TCK 0

#define TMS 1

#define TDI 2

/* set the port "p" (TCK, TMS, or TDI) to val (0 or 1) */
extern void setPort (short p, short val);

/* read the TDO bit and store it in val */
extern unsigned char readTDOBit () ;

/* make clock go down->up->down*/
extern void pulseClock() ;

/* read the next byte of data from the xsvf file */
extern void readByte (unsigned char *data);

#endif

*/
*/
*/
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Appendix D

Binary to Intel Hex Translator

This appendix contains C-code that can be used to convert
XSVF files to Intel Hex format for downloading to an
EPROM programmer. Most embedded processor code
development systems can output Intel Hex for included
binary files, and for those systems the following code is not
needed. However, designers can use the following C-code
if the development system they are using does not have
Intel Hex output capability.

Overview

The ISP controller described in this application note allows
designers to program and test XC9500 CPLDs from infor-
mation stored in EPROM. This information is saved in a

/*

binary XSVF file that contains both device programming
instructions as well as the device configuration data. The
8051 microcontroller reads the EPROM (or EPROMS) that
contain the XSVF file, converts the binary information to
XC9500 compatible instructions and data, and outputs the
programming information to the XC9500 device through a

4-wire test access port.

After an XC9500 design has been converted to XSVF for-
mat, the XSVF information is converted to Intel hex format
which is downloaded to an EPROM programmer. The
resulting EPROMSs, containing the CPLD programming
information, can then be used in this ISP controller design.

This program is released to the public domain. It

prints a file to stdout in Intel HEX 83 format.

*/
#include <stdio.h>

#define RECORD_SIZEO0x10/* Size of a record.
#define BUFFER_SIZE 128

/*** Local Global Variables ***/

static char *line, buffer [BUFFER_SIZE];
static FILE *infile;

/*** Extern Functions Declarations ***/

extern char hex( int c );
extern void puthex( int val, int digits );

/*** Program Main ***/

main( int argc, char *argv[] )
{
int c=1, address=0;
int sum, i;
i=0;

/*** First argument - Binary input file ***/

if (! (infile = fopen(argv[++i], "rb")))

fprintf (stderr,
exit(1);
}

{

"Error on open of file %s\n",argv[il]);

/*** Read the file character by character ***/
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while (c != EOF) {
sum = 0;
line = buffer;

for (i=0; i<RECORD_SIZE && (c=getc(infile)) != EOF; i++)

*line++ = hex(c>>4);

*line++ = hex(c);

sum += c; /* Checksum each character.
}
if (i) |

*/

sum += address >> 8;/* Checksum high address byte.*/
sum += address & O0xff;/* Checksum low address byte.*/

sum += 1i; /* Checksum record byte count.*/

line = buffer; /* Now output the line! */

putchar(':');

puthex (i, 2); /* Byte count. */

puthex (address, 4) ; /* Do address and increment */

address += 1i; /* by bytes in record. */

puthex (0,2); /* Record type. */

for(i*=2;i;i--) /* Then the actual data. */
putchar (*line++) ;

puthex (0-sum, 2) ; /* Checksum is 1 byte 2's comp.*/

printf("\n");

}

printf (":00000001FF\n");/* End record. */

/* Return ASCII hex character for binary value.

char
hex( int c )
{
if((c &= 0x000f)<10)
c += '0";
else
c += 'A'-10;
return ( (char) c);

/* Put specified number of digits in ASCII hex.

void
puthex( int val, int digits )
{
if (--digits)
puthex (val>>4,digits) ;
putchar (hex(val & 0x0f));

*/

*/

{
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Using Automatic Test Equipment to
Program XC9500 Devices In-System

Application Note

Summary

This application note describes how to program XC9500 devices in-system, using standard automatic test equipment.

Xilinx Family
XC9500

Introduction

XC9500 devices use a standard 4-wire Test Access Port
(TAP) for both In-System Programming (ISP) and IEEE
1149.1 boundary scan (JTAG) testing. Therefore, manufac-
turers can reduce their overall system cost and reduce
device damage due to unnecessary handling by using
automatic test equipment (ATE) to both program and test
these devices. The XC9500 Boundary-scan architecture is
shown in Figure 1.

The Xilinx EZTag™ software helps make this possible by
automatically generating a Serial Vector Format (SVF) file
describing the programming and test algorithms required
by the XC9500 devices. Most ATE platforms accept SVF as
a test vector input format. This application note describes
the steps required to generate an SVF file and how the ATE
uses this file to program and test a device.

Device
I/0 Pins— XX

SVF Overview

The original Serial Vector Format was developed jointly by
Texas Instruments and Teradyne in response to a need for
the exchange of boundary-scan test vectors between such
tools as test generation software and ATE. At that time,
usage of the IEEE standard 1149.1 was increasing but no
common format or language existed to satisfy the need for
a common data exchange.

The developers of SVF chose a format that did not use test
vectors solely to provide TCK (clock) and TMS (mode con-
trol) signals to the IEEE 1149.1 TAP. Instead, the underly-
ing models of the SVF format assume that all operations
begin and end in stable states. This results in a much sim-
pler and more concise description of the stimulus vectors.

e
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Figure 1: XC9500 Boundary Scan Architecture
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Between mid-1991 and the autumn of 1994 three revisions
of SVF were developed, with the goal of creating a format
that was independent of the test application vehicle. By late
1994 over 100 companies had developed SVF-based tools
and at least ten vendors of CAE tools and ATE were sup-
porting SVF.

SVF has proven itself to be a useful and reliable format for
exchanging data between ATE and the software that drives
it.

SVF Specification

For the purposes of XC9500 ISP, only three records of the
thirteen SVF records that describe the standard are
needed. Those three records are discussed in this section.

An SVF file contains a set of ASCII statements. The maxi-
mum number of characters allowed on a line is 256, how-
ever one SVF statement can span more than one line.
Each statement consists of a command and its associated
parameters, terminated by a semicolon. SVF is not case
sensitive and comments are indicated by an exclamation
point (!) or a pair of slashes (/) at the beginning of a line,
terminated by a carriage return.

Scan data within a statement is expressed in hexadecimal
and is always enclosed in parenthesis. The scan data can-
not specify a data string that is larger than the specified bit
length; the Most Significant Bit (MSB) zeros in the hex
string are not considered when determining the string
length. The bit order for scan data defines the LSB (right-
most bit) as the first bit scanned into the device for scan
data specified by the TDI and SMASK keywords, and is the
first bit scanned out for data specified by the TDO and
MASK keywords.

The following SVF Commands are supported by the
XC9500 EZTag software:

* SDR (Scan Data Register).
¢ SIR (Scan Instruction Register).
¢ RUNTEST.

In each of the following command descriptions the parame-
ters are mandatory. Optional parameters are enclosed in
brackets ([ ]). Variables are shown in italics. Parenthesis

“( )"are used to indicate hexadecimal values.

A scan operation is defined as the execution of an SIR or
SDR command and any associated header or trailer com-
mands.

SDR, SIR

SDR length [TDI (tdi)] [TDO (TDO)] [MASK
(msk)] [SMASK (smask)][PIO (pio)l;

SIR length [TDI (tdi)] [TDO (TDO)] [MASK
(msk)] [SMASK (smask)][PIO (pio)l;

These commands specify a scan pattern to be applied

to the target scan registers. The SDR command (Scan
Data Register) specifies a data pattern to be scanned
into the target device Data Register. The SIR command
(Scan Instruction Register) specifies a data pattern to
be scanned into the target device Instruction Register.

Parameters:

length — A 32-bit decimal integer specifying the num-
ber of bits to be scanned.

[TDI (tdi)] — (optional) This specifies the value to be
scanned into the target, expressed as a hex value. If
this parameter is not present, the value of TDI to be
scanned into the target device will be the TDI value
specified in the previous SDR/SIR statement. If a new
scan command is specified, which changes the length
of the data pattern with respect to a previous scan, the
TDI parameter must be specified, otherwise the default
TDI pattern is undetermined and is an error.

[TDO (tdo)] — (optional) This specifies the test values
to be compared against the actual values scanned out
of the target device, expressed as a hex string. If this
parameter is not present, no comparison will be per-
formed. If no TDO parameter is present, the MASK will
not be used.

[MASK (mask)] — (optional) This specifies the mask to
be used when comparing TDO values against the
actual values scanned out of the target device,
expressed as a hex string. A “0” in a specific bit position
indicates a “don’t care” for that position. If this parame-
ter is not present, the mask will equal the previously
specified MASK value specified for the SIR/SDR state-
ment. If a new scan command is specified which
changes the length of the data pattern with respect to a
previous scan, the MASK parameter must be specified,
otherwise the default MASK pattern is undefined and is
an error. If no TDO parameter is present, the MASK will
not be used.

[SMASK (smask)] — (optional) This specifies which
TDI data is “don’t care”, expressed as a hex string. A “0”
in a specific bit position indicates that the TDI data in
that bit position is a “don’t care”. If this parameter is not
present, the mask will equal the previously specified
SMASK value specified for the SDR/SIR statement. If a
new scan command is specified which changes the
length of the data pattern with respect to a previous
scan, the SMASK parameter must be specified, other-
wise the default SMASK pattern used is undefined and
is an error. The SMASK will be used even if the TDI
parameter is not present.

Example:

SDR 24 TDI (000010) TDO (818181) MASK
(FFFFFF) SMASK (0);

SIR 16 TDO (ABCD);
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RUNTEST
RUNTEST run_count TCK;

This command forces the target IEEE 1149.1 bus to the
Run- Test/Idle state for a specific number of TCK clock
periods. This can be used to specify latency periods
when operating the TAP.

Parameters:

run_count — The number of TCK clock periods that
the 1149.1 bus will remain in the Run Test/Idle state,
expressed as a 32 bit unsigned number.

Example:
RUNTEST 1000 TCK;

A Sample XVF File is shown as follows:

! Begin Test Program

TRST OFF; !disable test reset line

ENDIR IDLE; 'End IR scan in IDLE

SIR 8 TDI (FE) MASK (FF)

SDR 14 TDI (3afe) MASK (3ff) TDO (0003)
SMASK (3ff)

RUNTEST 100 TCK

'End test program

Using EZTag to generate an SVF file

This procedure shows how to create an SVF file; it
assumes that the Xilinx XACT version 6.0.0 software, or
newer, which includes the XC9500 fitter and the EZTag
software, is being used.

1. Create the design using XABEL-CPLD or any compati-
ble third-party design entry tool.

2. Fit the design and save it to a JEDEC output file.

3. Invoke the EZTag software from the XACT command
line using the following command:

eztag -svf

The following message appears:

Xilinx (R) EZTAG XC9500-CPLD-6.0.0 - JTAG
Boundary-Scan Download

Copyright (C) Xilinx Inc. 1991-1995. All
Rights Reserved.

SVF GENERATION MODE.

EZTAG?

4. At the EZTAG? Prompt type the following command:

part deviceType1.designName1
deviceType2:.designName2
deviceTypeN:designNameN <CR>

where designName is the name of the design to trans-
late into SVF. Multiple deviceType:designName pairs
are separated by spaces.

This command defines the JTAG device chain, from one
to any number of devices. The parts specified in the
part command should be arranged in order beginning
with the first device to receive TDI and ending with the
last device to output TDO.

Note: For any non-XC9500 part in the JTAG chain
make certain that the BSDL file for the specified part is
available along the XACT path and is called device-
Type.bsd (e.g., 4003pc84.bsd for a XC4003 in the PC84
package).

. Enter any one of the following commands:

erase designName — generates an SVF file that spec-
ifies the bit sequence to erase the specified part.

verify designName [-j jedecFileName] — generates
an SVF file that specifies the bit sequence to read back
the device contents and compares it against the con-
tents of the specified JEDEC file.

program [-b] designName [-j jedecFileName] — gen-
erates an SVF file that specifies the bit sequence to
program the specified part from a JEDEC file named
designName.jed (or alternately, the JEDEC file name
specified after the “-j”). The program command options
add the following functionality:

-b — When using new devices shipped from the factory,
this switch skips the erasure process that usually pre-
cedes programming. Erasure is not necessary for a
device that has not been previously programmed.

. Exit EZTag by entering the following command:

quit

NOTE: The SVF file will be named designName.svf,
and will be created in the current working directory (the
directory in which EZTAG is being run). Consecutive
operations on the same designName file will overwrite
the SVF file each time. The SVF file contains all data
and commands necessary to perform the specified
function.

SVF Interpretation

The simplicity of SVF is also one of its major weaknesses.
Much of the behavior of SVF, while running, is left
unspecified by the standard. In order to optimize SVF
stimulus for an application, the interpretations of some
operations must be defined more precisely.

RUNTEST TCK

Many ATE manufacturers prefer not to generate bursts of
TCK activity because this results in significantly increased
test vector file sizes. This increases the overall test cost
and can cause the vector set to run inefficiently. Because
the RUNTEST record is used to wait for something to hap-
pen, most ATE manufacturers interpret the TCK burst spec-
ified as a time value. The favored interpretation is that the

January, 1997 (Version 1.0)
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number represents a wait time in microseconds. This is
how the EZTag-generated SVF files should be interpreted.

SDR predicted TDO values

The SVF specification describes a method for specifying
predicted TDO values. It does not, however, specify actions
to be taken when the predicted TDO value does not equal
the expected values.

When using Xilinx XC9500 parts, the TDO values predicted
reflect the status of the just completed operation (which
could be an erase or a program operation). If the status is
not the success status (which is the value predicted as the
TDO value in the generated SVF file) then the following
1149.1 TAP controller state transition sequence should be
followed (assuming the TDO validation failure is detected in
the EXIT1-DR state):

|
i —

Figure 2: Test Access Port State Diagram

Update-DR -
1 i 0

B A v

1. EXIT1-DR

2. PAUSE-DR

3. EXIT2-DR

4. SHIFT-DR

5. EXIT1-DR

6. UPDATE-DR

7. RUN-TEST/IDLE

The above state transition sequence is illustrated in the
1149.1 TAP state diagram in Figure 2.

The net effect of the state transition sequence is to nullify
the just-shifted-in programming or erase data and re-apply
the previous program or erase data. Note that the ATE
application interpreting the SVF must acknowledge this by
not advancing beyond the current SVF record.
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// First SDR record
SDR 27 TDI (000003fe)
TDO

RUNTEST 160000 TCK;
// Second SDR record
SDR 27 TDI (008003fe)

SMASK (07ffffff);

// Wait for 160 msec.

// at this SDR instruction.
RUNTEST 160000 TCK; // Wait
// Third SDR record

SDR 27 TDI (010003fe) SMASK
RUNTEST 160000 TCK; // Wait
// Fourth SDR record

SDR 27 TDI (018003fe) SMASK
RUNTEST 160000 TCK; // Wait

for 160 msec

(07f£££fff) TDO
for 160 msec

(07fff£fff) TDO
for 160 msec

// Just apply the value - no test for

SMASK (07ffffff) TDO (00000003) MASK (00000003);
// Apply value to TDI read TDO test for concurrence
// if not as expected do “failure recovery loop” - hold

(00000003) MASK (00000003);

(00000003) MASK (00000003) ;

Figure 3: SVF File Fragment lllustrating ATE Flow

Using the SVF file as an example, as shown in Figure 3, the
required ATE operation should then be as follows:

1. When reading an SDR instruction with a TDO specified
(like the second one in Figure 3), the predicted TDO
value must match the value output from the device on
the tester. If it does not match, then the failure recovery
loop is executed. In the RUN-TEST/IDLE state a pause
is inserted for the amount of time specified in the previ-
ously applied RUNTEST instruction.

2.0n exit trom the RUNTEST instruction, re-apply that
same SDR record (in this case the second one in the
file) and test the TDO value again.

1§ dbhm TN s mdabema A aveaastand caaliia b TAD aéada
it the TDO matches the expected value, the TAP state

machine is transitioned back to RUN-TEST/IDLE the
normal way (via EXIT1-DR and UPDATE-DR) and is
applied to the next SDR record.

w

4. This “recovery loop” is to be attempted no more than 32
times. If the TDO value does not match after 32 times,
the part is considered defective and the process should
abort with some failure indication supplied to the user.

Normally, less than 1% of the addresses fail the TDO check
and require the additional erase or program time associ-
ated with execution of the failure recovery loop.

Pseudo-code ATE Algorithm

The following pseudo-code describes the sequence of
operations that should be used in interpreting the SVF file
on a generic ATE.

1. Go to Test-Logic-Reset state
2. Go to Run-Test Idle state
3. Read SVF record

4. if SIR record then
go to Shift-IR state
Scan in <TDI value>

5. else if SDR record then
set <repeat count> to 0
store <TDI value> as <current TDI value>
store <TDO value> as <current TDO value>

6. go to Shift-DR state
scan in <current TDI value>
if <current TDO value> is specified then
if <current TDO value> does not equal <actual TDO
value> then
if <repeat count> > 32 then
LOG ERROR
go to Run-Test Idle state
go to Step 3
end if
go to Pause-DR
go to Exit2-DR
go to Shift-DR
go to Exit1-DR
go to Update-DR
go to Run-Test/Idle
increment <repeat count> by 1
pause <current pause time> microseconds
go to Step 6)
end if
else
go to Run-Test |dle state
go to Step 3
endif

7. else if RUNTEST record then
pause tester for <TCK value> microseconds
store <TCK value> as <current pause time>
end if
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Predicted ATE Programming Time

Two components make up the overall programming time of
the XC9500 part on ATE. The first component is the num-
ber of TAP vectors required to perform the specified opera-
tions. This is the number of TCK pulses that must be
applied to the TAP to execute the specified operations (with
TMS and TDI set appropriately). In the SVF file, this is
described by the SDR and SIR records. The second com-
ponent is the latency time associated with program and
erase operations. During this period of time, TCK does not
need to be pulsed (although it could be). Rather, the tester
should simply pause. In the SVF file, this is described by
the RUNTEST TCK record.

To determine the overall performance, the speed at which
the ATE can stream the TAP stimulus vectors to the part
must be considered. The equation below describes the typ-
ical programming time for a single XC9500 part.

Definition of Terms:

¢ FB = the number of function blocks = (the number of
macrocells) / 18.

* Tvec = rate of application of ISP vectors = sec/vector,
typically @ 10MHz = 0.1 usec/vector.

* Terase = flash erase time for each sector, typically
160 milliseconds.

* Tpgm = flash program time for each address, typically
160 usec.

Note: XC95144 and larger parts have auto-increment
mode which significantly reduces number of ATE vectors
that must be applied.

Operations:

Parts arriving from the factory are already erased. For
these parts, the erase step may be skipped and therefore
programming is described by the following equation:

1. Program Only
(2880*(FB)**2 + 34561*FB + 60)*Tvec +

(90* (FB)**2 + 1080*(FB))*Tpgm
2. Program (auto-inc.) Only

(1350*(FB)**2 + 16201*FB + 91)*Tvec +
(90*(FB)**2 + 1080*(FB)) *Tpgm

Parts being re-programmed must first be erased and then
programmed. The EZTag software defaults to using this
approach:

3. Erase/Program

(2880*(FB)**2 + 34625*(FB) + 74)*Tvec +
(2*FB) *Terase + (90*(FB)**2 +
1080*(FB) ) *Tpgm

4. Erase/Program (auto-inc.)

(1350*(FB)**2 + 16265*(FB) + 105)*Tvec +
(2*FB) *Terase + (90*(FB)**2 +
1080* (FB) ) *Tpgm

Conclusion

By using the EZTag-generated SVF files it is possible to
streamline manufacturing flows by programming XC9500
parts on automatic test equipment. This allows integration
of the program and test steps of the system manufacturing
process. This integration will result in higher system yields,
better manufacturability, and simpler part inventory man-
agement.
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Application Note

In-System Programming Times

Summary

This application note discusses the in-system programming speed of the XC9500 devices.

Xilinx Family
XC9500

Introduction

XC9500 devices receive programming vectors and instruc-
tions via the JTAG Test Access Port. During programming,
the address and data information is shifted in first and then
a “burn-in” time is initiated to imprint the programming data
into the selected flash cells. This is repeated for all flash
memory addresses within the device.

Therefore, the time required to program an XC9500 device
includes two components: the information download time
and the flash memory burn-in time. in the typical applica-
tion, where the JTAG clock operates from 1MHz to 10 MHz,
the flash memory burn-in exceeds 90% of the total pro-
gramming time.

Device Programming Times

Programming time varies greatly, depending on the pro-
gramming environment.

Programming in a Production Environment

In a production environment, fast programming times trans-
late to reduced costs, and most Automatic Test Equipment
(ATE) used for board testing is capable of efficiently down-
loading information to the XC9500 devices at the maximum
speed of 10MHz. In order to minimize the production pro-
gramming costs, XC9500 devices are fully erased and
ready for programming when shipped from the factory.

The device programming times for a production environ-
ment are shown in Table 1.

Table 1: Typical Device Programming Times

Programming in a Development
Environment

The device programming times in a typical development
environment are usually much longer than those for the
production environment for several reasons; there is
overhead time spent in the real-time generation of
programming vectors from the JEDEC bitmap, bandwidth
limitations for outputting JTAG vectors using a general
purpose computer, and the time required to erase the
device. Together, this overhead can cause a 10 to 50 times
increase over the programming times shown in Table 1.

The development environment programming times vary
depending on whether the download cable is parallel or
serial and they depend on the configuration and type of
base computer system.

Programming Multiple Devices
Concurrently

Multiple devices in a JTAG chain can be programmed con-
currently by downloading all devices with the programming
information and then concurrently burning-in all devices in
the chain. Therefore, because the download time is small,
the total time required to program all devices in a chain is
only a little longer than the time required to program the
largest device in the chain.

Conclusion

XC9500 devices can be programmed very quickly in a pro-
duction environment.

'XC9500 Programming Time Using ATE at 10MHz
Device Type 1 Device 10 Devices 20 Devices
XC9536 4.8 seconds 5.0 seconds 5.3 seconds
B XC9572 5.4 seconds 6.0 seconds 6.6 seconds
7777777 XC95108 |  4.8seconds 5.7 seconds 6.6 seconds
: XC95144 6.9 seconds 8iseconds | 9.3seconds
XC95180 9.6 seconds 11.4 seconds 13.2 seconds
T XC95216 12.6 seconds 14.6 seconds 16.6 seconds
*jjf ~ XC95288 _ | 18.3seconds 20.8 seconds B 23.3 seconds

January, 1997 (Version 1.0)

1-53



In-System Programming Times

1-54 January, 1997 (Version 1.0)



$7 XILINX Application Notes

1 ISP and JTAG Support
2 Application Notes

3 XC9500 Data Sheets

4 XC7300 Data Sheets

5 Device Packaging

6 Quality Assurance

7 Technical Support

8 Sales Offices, Representatives, Distributors




Visit us on the WEB at:

www.Xilinx.com

for the latest application notes.




S XILINX

XC9500 Pin-Locking
Capability and Benchmarks

Ja;nuary, 1997 (Vefsion 1.3)

Application Note

Summary

This application note presents benchmarks that demonstrate the superior pin-locking capability of the Xilinx XC9500
CPLDs. These benchmarks are based on typical applications and demonstrate the benefits of a highly routable switch
matrix and wide function block fan-in when iterating pin-locked designs. The Xilinx results are compared to other vendors’
CPLDs using their production fitters, proving that the Xilinx XC9500 family is the industry’s best pin-locking CPLD.

Xilinx Family
XC9500

Introduction

The Xilinx XC9500 CPLD family provides the most
advanced, most reliable pin-locking capability in the indus-

fru This important feature allows degioners to maintain
npo! ealure anew S GEeSigners I mamamn

pmouts after making design changes, eliminating costly,
time consuming PC board re-work. CPLDs that do not have
adequate pin-locking capability usually require new pinouts
even after minor design changes, leaving no room for error
and no possibility for field upgrades or field customization.
Now, with the XC9500 family, designers can save time and
money because they no longer need to modify PC boards
every time they make a design change. In addition, this reli-
able pin-locking capability allows designers to use the in-
system programmabilily features of the XC9500 family to
upgrade or modify systems in the field.

This application note demonstrates the advanced pin-lock-
mn features of the XC9500 fnmnlu and provides nm Imkmn

eaiures O IOV 1S PTOVICES

performance comparisons for competlng devnces

Pin-Locking Issues

In most CPLDs, each I/O pin is driven directly by a macro-
cell through an I/O block as shown in Figure 1. When the

desion is nin-locked the fitter is forced to map Ir\nm into
Gesign 1S PIN-ICCKEG, The Nitier 18 erged

specific macrocells to maintain the pinout. If the devnce
architecture is limited, with inadequate routing in the central
switch matrix, the fitter may not be able to place and route
the design when the pins are locked.

Some CPLDs use an output routing pool in an attempt to
compensate for their primary routing deficiencies. How-
ever, output routing pools introduce additional delays and
do not prevent the fitter from having to consume logic
resources as routing feedthroughs, impacting both design
performance and resource utilization.

Logic requirements also affect the ability of the fitter to
place and route the design when the pinout is locked. Slow
speed designs with simple, narrow logic functions requiring
few inputs, feedbacks, and product terms are inherently
easier to pinlock than high speed designs with wide fan-in
and product term intensive logic functions.

To FastCONNECT <
Switch Matrix -
Macrocell /1_‘

VO Pin

N

T ou

PTOE

) >

Simplified XC9500 I/O Architecture

Figure 1:

I/0 Block
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The Keys to Reliable Pin-Locking

To address these pin-locking issues, Xilinx XC9500 CPLDs
feature abundant routing resources, wide function block
fan-in, and flexible product term allocation. The XC9500 fit-
ter also optimizes the initial placement to maximize the
design’s pin-locking capability. Each of these factors is
described as follows.

Routing Resources

Routability is a primary requirement for reliable pin-iocking.
The routing resources of a CPLD determine how much of
the logic block resources (inputs, product terms, and regis-
ters) can be used to accommodate design changes after
the pins are locked in a design. In a fully routable CPLD,
buried logic can be moved without regard to routing restric-
tions, freeing function block resources that may be needed
by the logic that drives the I/O pins.

The XC9500 family provides the most routing resources of
any CPLD family currently available. The FastFLASH tech-
nology used in the XC9500 family uses smaller cell sizes
than other technologies and therefore more routing
switches can be packed into the same area. As a result, all
devices in the XC9500 family are 100% routable; if there
are enough function block resources to implement the
design, it will route.

Pin-locking restricts the fitter's capability to place design
resources and therefore good routability is crucial. With
adequate routability, the constraints imposed by fixed
pinouts can be overcome.

Function Block Fan-In Capability

Wide function block fan-in is another important requirement
for pin-locking. Since CPLDs are typically used for high
speed signal-intensive logic functions, wide function block
fan-in is a requirement for implementing functions in a sin-
gle logic level. The number of available function block
inputs affects the fitter's ability to add more signals to any
logic that must remain in that function block (because it
drives 1/O pins). Wide fan-in also helps the fitter implement
that logic in a single pass though the device.

Each XC9500 function block has 36 inputs from the switch
matrix. Other vendors’ in-system programmable CPLDs
have as few as 16 inputs.

Product Term Allocation

Product term allocation is important to pin-locking because
it allows design changes that increase the product term
requirement. All XC9500 devices allocate individual prod-
uct terms from anywhere in the function block to the macro-
cell that needs them, accommodating logic changes when
the design is pin-locked.

In the XC9500 family, up to 90 product terms can be allo-
cated to any macrocell in the function block. This is in con-

trast to other vendors’ CPLDs that restrict the product term
availability (from 5 to 32 pterms) on the basis of macrocell
location in the function block.

Fitter Strategy

Fitter software is a key component of any successful CPLD
pin-locking solution. It must work in conjunction with the
device architecture, spreading the outputs to accommodate
design changes when the design is pin-locked.

The XC9500 fitter is optimized to take full advantage of the
hardware resources of the XC9500 family. The fitting algo-
rithms that determine how to place and route the design
make full use of the abundant routing and product term
allocation resources within an XC9500 device to give
unparalleled pin-locking performance. The Xilinx fitter is
capable of intelligently utilizing all available device
resources to retain pinouts and still maintain the required
performance, even after significant design changes.

Pin-Locking Benchmarks

The following benchmark data shows the relative pin-lock-
ing performance of Xilinx, Altera, Lattice, and AMD CPLDs.
These benchmarks are based on typical applications such
as address decoders, datapath designs, and address
counters, in which reliable pin-locking is crucial. They illus-
trate the CPLD’s capability to accommodate design
changes while maintaining an acceptable level of design
performance, because not only must the iterated design re-
route when the pinout is maintained, it must do so with min-
imal impact on design performance. Therefore, all of the
benchmark data presented in this application note is nor-
malized to the design performance achieved when the fit-
ters are free to choose the pinouts without restrictions.

Synario™ was used for design entry to support retargeting
to multiple CPLD vendors using identical ABEL code. The
following fitters from the CPLD vendors were used to imple-
ment the benchmark designs:

e XABEL-CPLD v6.1 for Xilinx

e pDS+ v2.2 for Lattice

¢ MAX+2 v6.2 for Altera

¢ MACH Device Kit v2.3 for AMD

Each design was initially compiled by allowing the fitter to
freely choose the pinout. After changes were made to the
design, it was re-compiled using the previously assigned
pinout. Design performance was measured using tpp and
external fyax as true measures of system performance,
where external fyyax is defined as 1/(tco + tsy).

Software and Device Availability

Not all of the other vendors’ announced devices were sup-
ported by their software and therefore not all of their device
densities and packages could be evaluated, as indicated in
the following charts. Updated benchmarks will be published
when available.
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Address Decoder Benchmark

This benchmark design, shown in Figure 2 and Figure 3,
measures the effect of routing resources and function block
fan-in on the CPLD’s pin-locking capability. The design con-
tains two 16, 32, or 36 bit buses which are decoded to gen-
erate two chip select outputs. A typical design change,

imuniui ront
i

volving the correction of a typographic error in which the
outputs are decoded incorrectly, is illustrated in Figure 4.
The benchmark results in Figure 11 demonstrate that both
the Xilinx XC9500 family and the Aitera EPM7000S devices
were able to accommodate the design changes without
impact on design performance. The Lattice devices main-
tained the same pinout with a significant (up to 60%) perfor-
mance penalty. Since the Lattice devices have 16 input
logic blocks, the performance degradation of the 16-bit
address decoder can be attributed to poor routing
resources while the performance of the 32 and 36 bit
decoders is degraded by both poor routing and narrow logic
block fan-in.

The AMD MACH 5 devices exhibited a 33% performance
degradation in the higher pin count packages when the
designs were pin-locked. This degradation resulted from
segment delays incurred during re-routing (but not incurred
during the initial design compilation). Additionally, the
MACH 5 software was unable to route the 36-bit wide
decoder during the initial compile. This can be attributed to
poor fitter performance, inadequate routing resources, or
both.

Function
a[N:0] Block[_‘1 Out1
(- ), -
Function
b[N:0] Blockl_-‘z Out2
o | o

Figure 2: Address Decoder

MODULE SWAP

TITLE ‘DECODER’
//inputs

al5..a0 pin; “A bus
bl5...bo pin; “B bus

//variables
a_bus = [al5..a0];
b_bus = [bl5..b0];

//outputs
outl pin istype ‘com’;
out2 pin istype ‘com’;

equations
outl = a_bus == 24;
out2 = b_bus == 24;
END
Figure 3: Address Decoder Code
B
a[N:0] Outt
-.+ ’IIIIIIIIII..III(:J
;‘l‘ock 2
b[N:0] Out2
-+ F-------c:

outl =‘b‘bus == 24;
out2 =1a bus == 24;

/

Note: In this example, due to a typo,
the wrong address bits are decoded and
therefore the bus must be rerouted.

Figure 4: Address Decoder Design Iteration

January, 1997 (Version 1.3)
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Datapath Benchmark

This benchmark design, shown in Figure 5 and Figure 6,
measures the affect of routing resources on the CPLD’s
pin-locking capability. This design contains a single 16, 32,
or 36 bit wide data bus. A typical design change involving
the reordering of data bits is illustrated in Figure 7.

The benchmark results shown in Figure 12 show that the
Xilinx XC9500, AMD MACH 5, and Altera EPM7000S
devices were able to accommodate the design changes
without impact on design performance. Both the Lattice
ispLSI1000 and ispLSI2000 devices sacrificed perfor-
mance (up to 80%) to reroute the design when pinlocked.
Since only one logic block input was required for each out-
put, this performance degradation can be attributed to poor
routing resources, or fitter performance, or both, but cannot
be attributed to logic block fan-in.

input0 Output0
- |
inputh  ’ I OutputN
- -
Figure 5: Data Path
MODULE REORDER
TITLE ‘Datapath test’
//inputs
inputl5..input0 pin; “inputs
//outputs
outputl5..output0 pin istype ‘com’; “outputs
equations
[outputl5..output0] = [input0..inputl5];
END
Figure 6: Data Path Code
a0 OutN
O 1
aN Outo
[ -]

[outputl5..output0] = [input0..inputl5];

Note: In this example, due to a typo,
the data bits are ordered incorrectly
therefore they must be reordered.

Figure 7: Datapath Design Iteration

Address Counter Benchmark

This benchmark design shown in Figure 8 and Figure 9,
measures the effect of routing resources and function block
fan-in on the CPLDs pin-locking capability when macrocell
feedbacks and other high fan-out signals are involved. The
design contains two 16, 24, or 32 bit loadable address
counters loaded from separate buses but with common
clock and hold signals. A typical design change correcting
initial count load value is illustrated in Figure 10.

The benchmark results shown in Figure 13 demonstrate
the superiority of the Xilinx pin-locking capability vs. Altera
Lattice, and AMD. All Xilinx XC9500 devices were able to
accommodate the design changes without impact on
design performance. When the Altera EPM7000,
EPM7000E and in-system-programmable EPM7000S rout-
ing resources were stressed, performance didn’t just
degrade, the devices completely failed to route. The Lattice
ispLSI12000 devices used several layers of logic in the initial
design, with correspondingly low fysax. This enabled the fit-
ter to reroute the design using alternate routing paths, with
less performance degradation (20%) than designs initially
using only one logic level.

The MACH 5 devices were able to accommodate the
design changes without incurring additional time delays for
the 16- and 24-bit address counters. This was possible
because segment delays were incurred during the initial
design compilation and not just during the re-route. How-
ever, they completely failed to route the 32-bit wide
counters during the initial design compilation. This can be
attributed to poor fitter performance, inadequate routing
resources, or both.

qa[N:0]

adata[N:0] [ se——— ACNT

|

aioad [O————

L_L qb[N:0]
bdata[N:0] [e——— BCNT|
bloed[>———— ———— |
AN

clock [D-
hold [ J

|

Figure 8: Address Counter
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MODULE CNTSWAP
TITLE ‘Counter Swapping’

//inputs

clock pin; “clock

hold pin; “counter hold
ainl5..ain0, aload pin; a data bus
binl5..bin0, bload pin; b data bus

//outputs
qal5..qa0, gbl5..gb0, pin istype ‘reg’;

//variables
acount = [galS..qa0]; adata = [ainl5..ain0];
bcount = [gbl5..gb0]; bdata = [binl5..bin0];

equations

acount := adata & aload

# acount & t!aload & hold

# (acount + 1) & 'aload & !'hold;
acount.clk = clock;

bcount := bdata & bload

# bcount & !bload & hold

# (bcount + 1) & !'bload & 'hold;
bcount.clk = clock;

END

Figure 9: Address Counter Code

qa[N:0]
adata[N:0] ACNT a
aload
[ 1 QbIN:0)
bdata{N:0] [> BONT i—C]
boad > |
clock [ I ]
hold

acount := bdata\& aload

bcount :=\ adata/& bload

Note: The counter loads the data incorrectly,
and therefore the inputs must be swapped.

Figure 10: Address Counter Design Iteration

Conclusion

The benchmark results show the superior pin-locking per-
formance of the Xilinx XC9500 family. This performance is
consistent across all devices and package types. The wide
function block fan-in enables pin-locking of wide, high
speed logic functions. And, because feedthroughs are not
needed for routing, there is no performance degradation
due to routing congestion. This timing consistency is as
important as routing ability for maintaining pin-locked
designs.

Altera MAX7000, 7000E, and 7000S devices exhibit pin-
locking problems due to sparse routing resources. This
occurs when many macrocell feedbacks are used and
these macrocells drive output pins. The problem is made
worse in higher pin count versions of these Altera devices.

The current Altera software does not use logic
feedthroughs to resolve routing congestion. Instead, when
routing congestion occurs, the design fails to route. This
failure can lead to unnecessary PC board re-work to
accommodate the design change.

Lattice ispLSI devices suffer from poor routing resources
and narrow function block fan-in. The Lattice fitter does use
logic resources as feedthroughs in an effort to completely
route the design. However, the impact on performance and
utilization is significant, even for these very simple designs.
In some cases tpp slows as much as 80% and macrocell
count increases 25%. The Lattice ispLSI devices employ a
poor pin-locking architecture.

The AMD MACH 5 devices appear to suffer from a combi-
nation of inadequate routing resources and poor fitter per-
formance. Narrow functions always re-routed after pin-
locking, but with some performance degradation caused by
segment delays. However, re-routing of wide functions is
the strongest test of the affect of routing resources on pin-
locking; in these tests, the AMD MACH 5 failed completely
because it could not route the designs, even during the ini-
tial design compilation.

January, 1997 (Version 1.3)
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Altera

Lattice

AMD

All XC9500-10

(Note 1)

EPM7128S-10
and larger

All ispLSI1000

M5-192-10
M5-256-10

XC9572-10
and larger

(Note 1)

EPM7128S-10
and larger

' a b

ispLS1032-90[a]
ispLSI1048-80 [b]

'a b

M5-192-10PQ160/208 [a]
M5-192-10PQ100/144 [b]

16-Bit Bus

(3

32-Bit Bu

XC95108-10
and larger

(Note 1)

EPM7128S-10
and larger

(Note 2)

ispLSI1048-80

M5-192-10
M5-256-10

Note: Failed to Route

36-Bit Bus

it =l i

tpp Performance — Initial Compile Before Pin-Locking [ ]
tpp Performance — After Pin-Locking, with changes [}

Note 1: Lower density 7KS not avail.,

Note 2: Not enough I/O for design,

or would not generate pinout.

using ispLSI11032.

Figure 11: Address Decoder Pin-Locking Performance
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1
Xilinx
All XC9500-10
Altera
EPM7128S-10
and larger
Lattice |
|
All ispLSI1000
|
AMD
M5-192-10
M5-256-10
i
| 16-Bit Bus

XC9572-10
and larger

EPM7128S-10
and larger

ispLS12064-100
and larger

M5-192-10
M5-256-10

 32-BitBus

XC9572-10
and larger

EPM7128S-10
and larger

ispL.S12096-100
and larger

M5-192-10
M5-256-10

~ 36-Bit Bus

tpp Performance — Initial Compile Before Pin-Locking [ ]
tpp Performance — After Pin-Locking, with changes |

Figure 12: Datapath Pin-Locking Performance
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Xilinx
XC9572-10 XC95108-10 XC95144-10
and larger and larger
Altera
(Note 3)
a b c
EPM7096-10 [a] EPM7160E-10[a] EPM7256S-10
EPM7128S-10[p] EPM7128S-10(b|
and larger EPM7192S-10(c]
and larger
Note: EPM7096 Failed to Routel [Note. EPM7160, 7128 Failed to Route I [No!e: EPM7256 Failed to Route
After Locking Pins After Locking Pins After Locking Pins
1
Lattice
ispL.S12064-100 ispLSI2096-100(a) ispLSI2128-100
and larger ispLSI2128-100[p]
1
AMD
M5-192-10 M5-192-10 M5-192-10
M5-256-10 M5-256-10 M5-256-10
16-Bit Address 24-Bit Address 32-Bit Address
fmax Performance — Initial Compile Before Pin-Locking["] Note 3: :;n er‘écu"\gnh 10 o g;geé,;h;ngz
fmax Performance — After Pin-Locking, with changes [} 9

Figure 13: Address Counter Pin-Locking Performance
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Using the XC9500 Timing Model

Application Note

Summary

This application note describes how to use the XC9500 timing model.

Xilinx Family
XC9500

Introduction

All XC9500 CPLDs have a uniform architecture and an
identical timing model, making them very easy to use and
understand. To determine specific timing details, users
need only compare their paths of interest to the architec-
tural diagrams and, using the timing model presented here,
perform a simple addition of incremental time delays.

Device Timing Overview

External signals arrive at the pins and are delivered
through the 1/0 block to the FastCONNECT Switch Matrix.
From the switch matrix, they are dispatched to the various
Function Blocks (FBs). As the signals enter the FBs, they
incur incremental time delays depending on how the sig-
nals are used within the FB. For example, all logic signals
must pass through the AND array where they encounter
product terms which add a time delay as the signals pass
through. Additional time delay may be encountered if the
signals pass through the cascade logic and are redirected

toward macrocells that are further away than those directly
attached to the product terms.

There are additional timing requirements such as setup
and clock-to-output times involved with passing signals
through a flip-flop. As the signals exit flip-flops, they either
pass to the outside world, through the I/O pins, or are fed
back into the FastCONNECT s

logic operations.

auritalh mantriv far addAitianal
U miauiA ur auuniviiai

Design timing can be manually analyzed as separate sig-
nals, each having unique timing parameters that are easily
calculated. However, the Xilinx software provides a detailed
timing report that tallies and summarizes all paths specified
by the designer. The timing report is based on the model
described here and is a convenient text based mechanism
for isolating and displaying timing relationships.

The liming modei shown in Figure 1 is used by the M1
release of the Xilinx XACTstep development software
which provides complete fitters for the XC9500 family as
well as the timing models for simulation and detailed static
timing reports.

| Wr

— tLoaiLp

toai

S*tpra

DT Q

P>

Toor

tsul tcor
th
taol
L
Rai

SR

Macrocell

—{ ters

Figure 1: XC9500 Detailed Timing Model

January, 1997 (Version 1.0)
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Timing Model

The timing model shown in Figure 1 resembles the XC9500
macrocell with additional time delays included to account
for the FastCONNECT Switch Matrix and the 1/O buffers.
As signals progress through an XC9500 device, they
encounter each of these delays which are tallied to arrive at
a cumulative time delay for that signal. Table 1 provides a
detailed definition of each parameter contained in Figure 1.
The exact values of these parameters for each device can
be obtained from the data sheets.

Table 1: Key XC9500 Internal Timing Parameter
Definitions

Parameter
Buffer Delays
tin Input buffer delay
tack GCK buffer delay
tasr GSR buffer delay

Symbol |

Timing Calculation Examples

Table 2 shows how various external timing parameters are
derived from the internal timing parameters. For example,
tpp is the sum of the input buffer time delay (t,y), the logic
time delay (t_og)), the flip-flop pass through delay (tpp)),
and the output buffer time delay (toyt), as shown in
Figure 2. Note that the input buffer delay is combined with
the time delay accrued when the entering signal passes

through the FastCONNECT switch matrix.

Function Block

[
L/ L

5>

| tpp = tiy + tLogi + tpi + tour |

Figure 2: Simple tpp Example

tats GTS buffer delay
touT Output buffer delay Table 2: Expressions for Key Timing Parameters
ten Output buffer enable/disable delay Derived from Table 1
Product Term Control Delays Symbol Parameter Calculation
tprek Product term clock delay - Propagation T+ Loe * o1+ louT
tprsr Product term set/reset delay delay*
tF’TTS pBEUCt term 3-state de|ay tSU Global clock th + tLOG' + tSU' - tGCK
Internal Register and Combinatorial Delays setup time*
teoI Combinatorial logic propagation delay th 1/0 hold time tack + thi- tn - tLoal
tsul Register setup time after GCK
th Register hold time tco Global clock-to-out- |tgck + tcor + touT
tcol Register clock to output valid time put
taol Register async. S/R to output delay font  |16-Bit counter fre- | 1/(tcol + tr + tLoa + tsun)
tpal Register async. S/R recovery before clock quency
tLOG| Internal |OgiC de|ay fSYSTEM Internal SyStem 1/('[00[ + tF + tLOGl + tSU|)
t,_og”_p Internal low power logic delay clock period
Feedback Delays tpsy  |P-term Clock tin + tLoal + tsut - tin - terek
setup time*
tr FastCONNECT matrix feedback delay AL,
1 F tion Block | [Teedback del tpH 1/0 hold time tin + tpTok + th - tin - tLoal
tr unction 2_" ocal feedback delay after p-term clock
Time Adders tpco Product term clock- tIN + tF‘TCK + tCOI + tOUT
tpTA Incremental product term allocator delay to-output
tsLew Slew rate limited delay toe GTS to output taTs + ten ]
top enabled/disabled

‘POE P-term OE to output t|N + tPTTS + tEN

troD enabled/disabled

* See AC Table Parameters

January, 1997 (Version 1.0)
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Figure 3 shows a variation on the simple tpp example with
the addition of cascaded product terms. The time delay
from input A is slightly altered by the addition of one tpya
value which accounts for the additional product terms. The
XC9500 can accept and deliver product terms in either
direction, so the tpta time delay will handle this factor. Also,
product terms may arrive from non-adjacent macrocells,
which would require an additional tpys to be added. There-
fore, a single cascade delay may in some cases not be
what the design software has chosen. This cascade timing
can be controlled by using timing driven optimization,
described in detail in the Design Optimization application
note.

%
PADD7b

| tPD = tin + Lol + tpTa + tepi + tour |

Function Block

Figure 3: tpp with Cascaded P-Terms

Figure 4 shows the results of supplementing single pass
logic with an additional pass through another macrocell. In
this case, there is a single pass through the input and out-
put buffers. two passes through the macrocell logic, and a
single pass through the feedback path. The feedback path
can be either through the general feedback (tg) or the local
feedback (t, r), depending on timing constraints supplied by
the designer in a .CST file.

FastCONNECT Delay
Function Block Function Block

IO DD

[teo = tin + tLogi + teoi + (t OF tF) + tLoai + teoi + tout]

Figure 4: tpp with Multiple Pass Logic

Figure 5 shows the situation for a simple flip-flop clocked by
a global clock signal (GCK). The expressions for tcq, ty,
and tgy in Table 2 are valid for this arrangement.

Function Block

o DOD Do
S

GCK r’

[tsu = tin + tLo + tsui - tack
tco = taek + tcor + tout
ty =tgek + ti-tn- toa

Figure 5: Simple Flip-Flop Path
(Note: Global clock)

Figure 6 shows the addition of another layer of macrocell
logic into the situation described in Figure 5. The tco and ty
expressions remain the same, but the tgy, expression is
increased by another (t og) + tppy + (tF OF t £)) depending on
timing constraints supplied by the designer in a .CST file.

Function Block

DD

Function Block

D—D—m o_-[>u

—N ’—P
L/

GCK :

[tsu = tin + tLogi + teoi + (tr OF tip) + Yo + tsur - tack

Figure 6: Flip-Flop with Multiple-Pass Logic
(Note: Global clock, tco and t are unchanged.)
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Figure 7 shows two flip-flops connected by a single level of
logic, clocked by a global clock. The tg and ty for flip-flop A
are identical to that of Figure 5.

Function Block

oD Dt
cK [ -

Layer 1

G

Function Block
D-DF>—
B

Layer 2

[ fsystem = 1tcor + (tF OF tiF) + tiog: + tsul) |

Figure 7: Multiple Flip-Flops with Single Level Logic
(Note: Global Clock)

Figure 8 shows a single flip-flop with a product term clock.
This arrangement differs from Figure 5 only in that the clock
input comes from a product term clock. The entry for tpco
in Table 2 reflects this variation. The timing for tpgy and ty
is calculated using the product term clock timing parame-

ters.
Function Block
DD D>
PTCK — [— i
G S L/

tpsu = tin + tLogr + tsui - tin - tP'rcn(|

tpco = tin + tprek + tcor + tour

th = tn + terex + i - tin - tLoar

Figure 8: Single Flip-Flop with Product Term Clock

Figure 9 shows the timing for driving valid data onto a bus
with respect to a rising clock edge, a common configuration
that occurs in high speed buses. This is sometimes called
tyaL. In this example, it is assumed that Function Block
feedback passes through the local feedback paths.

Function Block

5 5

GCK P

Function Block

[ __
L/
(data) ___D_D__

[tvaL = tock + tcor * tur + terrs + ten |

Figure 9: Flip-Flop-Controlled Output Enable

Conclusion

This set of examples is sufficient to describe a large num-
ber of design configurations, and other examples can easily
be derived from the timing model. For manual calculations,
other timing delays such as tg gy and t_ogLp are easily
added to the overall timing as required.

January, 1997 (Version 1.0)
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Summary

This application note shows the tradeoffs that can be made to gain the greatest possible densities and speeds for schematic,
behavioral, and VHDL implementations.

Xilinx Family

XC9500

Introduction

The advanced architecture of the XC9500 CPLDs can based on the actual number of input signals delivered into
implement a wide range of design densities and speeds, each function block (FB). Although this is a physical limit, it
while allowing significant design changes to be made with- is possible to exceed it by permitting the software to wire

out modifying the original pinouts. The Xilinx XACTstep AND signals in the FastCONNECT switch matrix. The soft-
software (fitter) makes full use of this flexibility, giving ware will detect and utilize wire ANDing whenever it is
designers a number of easy to use options for optimizing required. This will allow the product of several signals to be
design performance. used as inputs to the FB on a single input line.

Y : Similarly, the default of 15 p-terms restricts the fitter from

oPtlm'zmg DenSIty collapsing logic functions that would use more than 15

The following techniques can be used for those designs product terms. This limits the size and the cascade timing

requiring the maximum amount of device resources. penalty. Designers may adjust these two options to achieve
improved fitting.

Controlling the Macrocell input and Pterm . . . .
When a design fails to fit, a report is created, summarizing

Limits the unmapped logic and pins. This may be used as a guide
The Xilinx XACTstep design software has options for set-  for adjusting the input collapsing limit and the product term
ting the limits of the fitting algorithms. Two key options are collapsing limit. The easiest approach is to experiment with
input collapsing and product term collapsing. The defaults different values. For example, when a design fails to fit, as
are 36 inputs and 15 p-terms. shown in Figure 1, adjust the input collapsing limit and run
another pass with the fitter. This will result in a successful fit

The 36 input limit restricts the fitter from collapsing logic or a new report of unmapped logic and pins.

functions that will require more than 36 inputs. This is

**xsxwxxxrkirResources Required by Unmapped Logic and Pins***xxxxxwxxdrxnsx
** Logic **

Signal Total Signals Pwr Slew
Name Pt Used Mode Rate
$18N1345 12 19 STD
DPCS 10 19 STD
IO_CYC_DET 10 14 STD
LBE1_N 10 13 STD
SPEC_CYC 10 14 STD
KAR R AR kAR XX R X AR X PUNCEION BlOCK RESOUICE SUMMAary* ** * %% %% %%k &% %%k k4% % %% &
Function # of FB Inputs Signals Total 0/1I0 I0
Block Macrocells Used Used Pt Used Req Avail
FB1 13 36 39 47 0/0 17
FB2 12 36 37 56 10/0 17
FB3 14 36 36 73 5/1 17
FB4 11 36 38 84 7/0 17
FBS 12 36 40 84 8/1 17
FB6 10 36 38 83 7/0 16
FB7 12 35 35 83 10/1 16
FB8 10 36 37 43 5/3 16

94 553 52/6 133

Figure 1: Report Showing a Design That Failed to Fit
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If the list of unmapped resources appears to be growing,
either raise or lower the limit for the next attempted fit. At
some point, the list will not improve, indicating that the best
ratio has been found. Then, adjust the product term col-
lapsing limit and repeat the process to find the optimum
ratio. Being systematic about the process ensures the
quickest convergence. Figure 4 shows a report file for a
design that fit after the input and pterm limits were adjusted
according to this process.

On the PC platform, the global collapsing p-term limit and
collapsing input limit can be set in the optimization template
of the flow engine. The same limits are set on the worksta-
tion platforms by using the “-pterms” and the “-inputs”
switch on the command line.

Preventing Logic Collapsing

Multiple levels of logic will frequently be collapsed to
achieve the fastest pin-to-pin speeds or the greatest fyax,
as shown in Figure 2.

) — =
) )
; =
D — = >

Figure 2: Logic Collapsing

Designers can easily control the collapsing of specific func-
tions by specifying the fanout nodes that are to be exempt

from the collapsing process. This can be accomplished in a
schematic by using the OPT=OFF attribute. In HDL
designs, this is accomplished by specifying the exempt
nodes within the text of the HDL design file using properties
or attributes. After flattening, the specified nodes are main-
tained as shown in Figure 3, resulting in greater density
designs.

)

Figure 3: Uncollapsed Node

The increased density is achieved by implementing a high
fanout function in a single macrocell versus collapsing the
same function into each of the fanouts. The greater the
number of fanouts an equation has, the greater the payoff.

Using Global Control Signals

By taking advantage of the global clocks (GCK), global set/
reset signals (GSR), and global 3-state signals (GTS),
which are available in every macrocell, designers can save
the local product terms that would have been used for
those same functions. These global signals also provide
higher performance than local signals and they conserve
the valuable FB inputs which can then be used for other
logic signals.

KRKAK KA XK KRk R** AKX A *Function BLlock RESOUrCe SUMMATy* * * %% %%k kadxkkkh ks ks

Function # of FB Inputs Signals Total 0/10 I0
Block Macrocells Used Used Pt Used Req Avail
FB1 11 36 41 28 0/0 17
FB2 14 36 43 45 0/0 17
FB3 18 36 37 46 12/1 17
FB4 11 36 41 47 8/1 17
FB5 14 36 36 54 8/1 17
FB6 10 35 37 46 8/1 16
FB7 13 36 39 45 7/2 16
FB8 18 36 36 78 9/0 16
109 389 52/6 133

Figure 4: Report Showing a Design That Fits
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Optimizing Timing
XACT step provides three convenient means for timing opti-

mization: Automatic timing optimization, TSPECs, and vari-
able p-term collapse limits.

Using Automatic Timing Optimization

The automatic timing optimization minimizes the longest
path in a design. It also improves the general timing of the
whole design if detailed timing control (TSPECs) is not
requested. Furthermore, it usually has no significant effect
on design density or software run time. Timing optimization
can be controlled in the optimization template on the PC, or
by using the -notiming switch on workstation platforms.

The default for timing optimization is OFF.

Using TSPECs

Timing Specifications (TSPECs) define the required timing
for specific paths in a design, causing the software to
choose the optimum logic mapping to achieve the specified
delays. TSPECs allow precise control over which paths are
to be optimized. Specifically, this affects the collapsing
order and the assignment of critical product terms near a
macrocell output. When a signal has a TSPEC attribute,
the fitter will use various methods to obtain the specified
performance. These methods include using logic collaps-
ing, limiting product term cascading, and using fast feed-
back paths within the FB.

See Appendix 1 for more information on using TSPECs.

Using P-Term Collapse Limits

Increasing the global p-term collapse limits increases the
collapsing of combinatorial nodes into their fanouts. This
usually increases the speed of the design but requires
more device resources to implement.

Optimizing Schematic Designs

The following optimization techniques can be used in sche-
matic designs.

Slew Rate Control

Assign the FAST attribute to output buffers or pads to spec-
ify the fastest slew rate. Unspecified outputs default to the
slow slew rate.

Power Control

Assign the LOWPWR attribute to those signals that don't
require the highest speed, in order to reduce power con-
sumption. This attribute only affects macrocells, not the /0
blocks. All unspecified outputs default to the higher power,
higher speed option.

Local Feedbacks

To use a local feedback path, use the LOC attribute to
assign both the source and destination components to the
same function block. Then, apply a TSPEC to that path
such that it can only be met using a local feedback path.

Logic Optimization
Use the OPT=OFF attribute on selected nodes to inhibit the
collapsing of those logic functions.

Optimizing ABEL Designs

The Xepld property statements are used within ABEL
designs to control optimization. These property statements
are passed directly to the Xilinx fitter and are not used by
ABEL.

Slew Rate Control

The FAST property controls the output slew rate, and there
can only be one FAST property used in each design. If
there are only a few signals that require a fast slew rate,
they can be listed individually after the property, and the
remaining signals will be slew rate limited. Or, if there are
only a few signals that need to be slew rate limited, then
those signals can be listed.

xepld property ‘fast on’;
“all pins have fast slew rate

xepld property ‘fast on x1 x2’;
“ only x1 and x2 are fast
“ the remaining pins are slew limited

xepld property ‘fast off xl1 x2’;
“only x1 and x2 are slew limited
“the remaining pins are fast

Local Feedbacks

The PARTITION property is used to force the specified sig-
nals into a specified FB. For example, the following state-
ment will force signal A and B into function block 1.

xepld property ‘PARTITION FB1l A B’;

This xepld property statement, can be combined with a
TSPEC in a .CST constraints file to specify timing. For
example:

TIMESPEC = “TSO01=FROM:FFS(A):TO:FFS(B)=3%
Power Control

The PWR property controls the power settings for individ-
ual macrocells.

xepld property ‘pwr low’;
“places all macrocells in low power mode

xepld property ‘pwr low x1 x2'
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“places x1 and x2 in low power mode
“the remaining in STD power mode

xepld property ‘pwr std xl1 x2’
“places x1 and x2 in STD power mode
“the remaining in low power mode

Logic Optimization

The LOGIC_OPT property allows the user to control the
logic optimization done by the fitter. This should be used on
selective nodes where collapsing those nodes would cause
the design to become very large.

xepld property ‘logic_opt off’;
“Preserves all combinatorial nodes

xepld property ‘logic_opt off x1’;
“preserve x1 and collapse other nodes to
fitter limits

Optimizing VHDL Designs

VHDL support varies among the existing vendors in how
the information is passed to the fitter. The summaries that
follow describe the methods used with the Synopsys and
Metamor VHDL tools.

Synopsis

Slew Rate Control is accomplished with a script
command:
-set_pad_type-slewrate NONE <port names>

Local Feedbacks are accomplished by using the LOC
attribute with a TSPEC (.CST file). LOC attributes are
handled as follow (the italic text indicates additions to a
standard script):

edifout_write properties list = loc
edifout_netlist_only = true
edifout_power and_ground_representation =
cell

analyze-format vhdl<design file name>
elaborate <design_name>

compile

set_attribute <output port> LOC <fb_name>
-type string

set_pad_type -slewrate NONE all_outputs()
set_port is_pad “*”

insert_pads

write -format edif -hierarchy -output
<design_name>.edif

Power Control is accomplished with the following script
alterations, which pass low power properties into the
design file (italic type indicates additions to a standard
script):

edifout_write_properties_list = LOWPOWER
edifout_netlist_only = true
edifout_power_and_ground_representation =
cell

analyze-format vhdl <design_ file name>
elaborate <design name>

compile

set_attribute <register net>_REG LOWPWR
ON -type string

set_pad_type -slewrate NONE all outputs()
set_port_is_pad “*”

insert_pads

write -format edif -hierarchy -output
<design_name>.edif

Note that the register net will have appended a extra
_REG to the name.

Metamor

Slew rate control is managed with a Metamor library
attribute. For a library attribute, include the metamor
libraries. For example:

LIBRARY metamor;

USE metamor.attributes.all;

Then, apply a property to the output signal as follows:
attribute property of B : signal is “Fast”

Local feedbacks are handled with the LOC attribute and
a TSPEC. To apply a LOC attribute, the designer must
first define it. This is done with the following code.
attribute LOC : string;

Then, apply the attribute to specific signals, as follows:
attribute LOC of B : signal is “FB2”;

A TSPEC can also be applied using a .CST constraints
file.

Power control is accomplished by defining a LOWPWR
attribute and applying it to signals as well. This can be
done with the following code:

attribute LOWPWR : string;

Then, apply the attribute to specific signals as follows:

attribute LOWPWR of B : signal is “on”;

2-16

January, 1997 (Version 1.0)



& XILINX

Appendix 1 — TSPEC and .CST File Format

TSPECs can be applied to designs using constraint files.
Constraint files can be used with all software flows, and
there are several ways to use them - depending on the spe-
cific path taken to the fitter step. The constraint file is
named “design.cst”, where “design” is the same character
string as the other design files. The .CST file is simply a text
file comprised of several lines that dictate specific timing
relationships must be met within the design.

There are only two types of signals defined in TSPECs.
These are FFS (flip-flops) and PADS (primary 1/Os). In gen-
eral, four parameters need to be controlled:

* tpp, the time a combinatorial output becomes valid after
an input has changed is defined using a PADS to PADS
definition.

* tgy. the external setup time for a signal at the pin of the
part before applying a clock is defined using a PADS to
FFS definition.

* fuax. the cycle time at which a set of flops can be
clocked internally is defined using FFS to FFS
definition.

* tco, the clock to out time of the design is specified by
using a FFS to PADS definition.

Specifying the estimated external clock speed requires the
user to specify tgy, fmax, and tgo. The external clock speed
will be calculated by using the longest delay of the three
parameters.

The following examples will show the basic syntax of the
constraint file and apply these definitions to control timing.

Example 1: Specifying tpp
TIMESPEC = “TS0l = FROM:PADS:TO:PADS =
7.5";
This TSPEC will constrain all signals that originate and ter-
minate at pins with a maximum time of 7.5 ns. When spec-
ifying tpd, however, the designer is usually only interested
in certain paths in the design. The designer can specify
groups of signals using the “timegrp” command. For
instance, assume the design has a set of inputs A15 to AQ,
and a set of outputs X15 to X0. By using a “timegrp”, the
designer can limit the constraints to only those signals.
Note that the designer can use the “*” for a wildcard match.

TIMEGRP = “AddressIn = PADS(A*)”";

TIMEGRP = “AddressOut = PADS (X*)”;
TIMESPEC = “TS0l1l = FROM: AddressIn:TO:Ad-
dressOut = 7.5”;

The TIMESPEC command specifies that the delay between
the inputs (A*) and the outputs (X*) is less than or equal to
7.5 nanoseconds.

Example 2: Specifying fyax

fumax is an extension of the TIMESPEC concept mentioned
in Example 1. To specify the maximum required operating
frequency for a flip flop or a group of flip flops, just use the
following equation:

TIMESPEC_value = (1/fy,y)

where fMAX is the required operating frequency. To get 100
Mhz operation for a group of flip flops, 10 ns must be spec-
ified. Again, this can be applied over a group of flip flops
using the TIMEGRP expression.

As a more concrete example, consider a design where mul-
tiple asynchronous chip select signals, Csel3 to Csel0, are
being synchronized by a set of input registers. Both the
input registers and the Csel registers are clocked by one
source. First, the designer can define the destination regis-
ters, again using a wildcard match. Then, the designer can
apply a TSPEC from all FFS to the timegroup, Csel.

TIMEGRP = “Csel=FFS(C*)”;
TIMESPEC = “TS01l = FROM:FFS:TO:Csel=10";

This constraint limits the cycle time from the output of the
input registers to the Csel registers to be a maximum of
10ns. This would allow us to clock the design at 100mhz
without violating internal setup times.

Example 3: Specifying tgy

To specify the worst case setup time for device inputs, use
the following equation:

TIMESPEC_value = (desired setup time) +
(tgcx)
where tgck is the fast clock buffer time obtained from the
target device data sheet.

For example, assume the desired setup time to clock delay
is no more than 5.5 ns for the timespec design. The value of
tack for the XC95108-7 is 2.5 ns. Therefore the TIMESPEC
value is (5.5 ns) + (2.5ns) = 8.0 ns.

In this example, assume that the Csel registers are being
driven by inputs A15 to AQ. the designer can now group the
inputs and the registers together, and apply a TSPEC from
the inputs to the flip-flops.

TIMEGRP = "Address=PADS(A*)";
TIMEGRP = "Csel=FFS(C*)";
TIMESPEC = "TS01=FROM:Ad-
dress:TO:Csel=8.0";
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Example 4: Specifying tco
To specify the worst case clock-to-output time for a regis-

tered device output clocked by a global clock (tcp), use the
following equation:

TIMESPEC_value = (desired tg) - (tgek)
In this example, assume that the Csel registers require a
tco of 5.5 ns. Again, the designer can group the registers
together, and apply a TSPEC from the flip-flops to the out-
put pads.

TIMEGRP = "Csel=FFS(C*)";
TIMESPEC = "TS0l=FROM:Csel:TO:PADS=3";

This TSPEC will constrain the signal path delay from the
output of a flip-flop to the pin to 3 ns.
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Designing with XC9500 CPLDs

Application Note

Summary

This application note will help designers understand the XC9500 architecture and how to get the best performance from

these devices.
Xilinx Family
XC9500

Introduction

To get the best performance from any CPLD, the designer
must be aware of its internal architecture and how the vari-
ous device features work together. This application note
provides useful examples and practical details for creating
successful designs. These design techniques apply to all
XC9500 devices because the architecture is uniform
across the family.

XC9500 Architecture

The XC9500 architecture is comprised of multiple identical
function blocks internally connected by a fully populated
FastCONNECT switch matrix. The XC9500 function block
has 18 macrocells per block and supports pin-to-pin
speeds as fast as 5 ns, with clock rates up lo 125 MHz. I/O
signals can interface with 5 volt, 3.3 volt, or both levels.

Figure 1 shows the XC9500 architecture. Note the regular
structure of high speed function blocks centrally connected
by the FastCONNECT matrix and surrounded by pins. Sig-
nals enter and exit on the pins, form logic operations within
the function blocks, and form connections and logic opera-
tions within FastCONNECT. Each of these features is dis-
cussed in the following sections to highlight key
functionality.

Interconnect Within Function Blocks

Function blocks (FBs) have 36 input sites. The FBs receive
signals from the FastCONNECT matrix and input pins. The
logic blocks generate 18 signals per FB from the 18 macro-
cells in each block, and each macrocell signal can drive its
own dedicated I/O pin or feedback by entering the Fast-
CONNECT matrix. Additional high speed local paths exist
within the FB.
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Figure 1: XC9500 Architecture
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The FastCONNECT Switch Matrix

The FastCONNECT switch matrix attaches high speed sig-
nals to the function blocks. It also connects every macrocell
output to the function blocks through a fully populated
cross-point switch. This high degree of connectibility is a
key factor that allows the designer to make design changes
even after a device is mounted on a PC board.

The function blocks, shown in Figure 2, are groups of 18
macrocells. Each FB has 90 product terms which can be
assigned to any of the 18 macrocells. This provides opti-
mum logic flexibility within the function block and supports
pin-locked designs. The highest possible performance is
attained by the software assigning a uniform five product
terms per macrocell. The macrocell outputs can then drive
output pins as well as provide inputs to both the FastCON-
NECT matrix and the FB in which it resides.

The Macrocell

In the default mode, there are 5 product terms that OR
together driving the D input to the macrocell flip-flop, as
shown in Figure 3. The most common arrangement

includes an Exclusive-OR gate capable of performing par-
ity, full addition, or logical inversion.

Another configuration exports product terms to a neighbor-
ing macrocell, increasing that macrocell’s available product
terms. Product term exporting is shown in Figure 3.

The XC9500 flip-flops can be configured as D- or T-type.
This permits the building of efficient counters using only a
few gates to drive the state transitions. Table 1 summarizes
the number of product terms needed to build common logic
functions; most datapath functions require one or fewer
macrocells per bit.

Table 1: Macrocell/Product Term Allocation

Data Operation P-Term Used

Shift Register 2

Counters 2-4

n:1 Mux

n
Adder 6
2

Exclusive-OR

Storage registers 1

Programmable Product
AND-Array Term

Allocators
From
FastCONNECT —%———»——k

Switch Matrix

Macrocell 1

18 To FastCONNECT
Switch Matrix

18 OuT

} To I/O Blocks
I

18 PTOE

Macrocell 18

Figure 2: XC9500 Function Blocks
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Figure 3: XC9500 Macrocells

Table 2 shows the pin compatibility of the XC9500 family.
Designs can easily be migrated to larger or smaller
devices. In many cases, greater density with equivalent
speed can be gained by using larger parts. If a design is ini-
tially targeted to a smaller device, the same design can be
moved into a larger device, if additional capability is
required. This capability allows designers maintain their pin

Table 2: XC9500 Available Packages and Device I/O Pins

J

assignments, even when designs must be moved to a
larger capacity device.

Moving designs from larger to smaller devices can also be
accomplished, while keeping the original pinout, if the
smaller device has enough resources to contain the design.

Package XC9536 | XC9572 | XC95108| XC95144 | XC95180| XC95216| XC95288| XCI5432| XC95576
44-Pin PLCC 34
44-Pin VQFP 34
84-Pin PLCC 69 69
100-Pin PQFP 72 81
100-Pin TQFP 72 81
160-Pin PQFP 108 133 133 133
208-Pin HQFP 166 166 168
352-Pin BGA 166 192
432-Pin BGA 232 232

Note: These numbers do not include the dedicated JTAG pins.
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Automatic Software

The following design examples are created in ABEL. Typi-
cally, designers won'’t designate specific function mapping
into XC9500 designs. However, designers occasionally like
to control how a solution is implemented, and in that case,
these methods may be of interest.

Boolean operators used by ABEL are ! for invert, # for OR,
and & for AND. Combinatorial logic expressions are formed
| eimn i arande and anaratarc lnnatad on

m th An. a
with an equa! sign, with operands and operators located o

the right hand side of the expression.

Flip-flops are formed by writing expressions for the specific
control pins of the flip-flop. The D-input is a special case,
represented by the compound symbol “:=". Clock inputs are
determined by the syntax flip-flop_name.clk, and reset
inputs are designated by flip-flop_name.rst.

An ABEL design file contains a header section including
optional documentation sections and mandatory declara-
tion of inputs, outputs, global signals, and any user pre-
ferred arrangement of functions.

Logic AND

The FastCONNECT switch matrix is capable of combining
signals with a wire-AND function. Signals entering the Fast-
CONNECT matrix are assigned to function block inputs,
and multiple signals, may form a wired-AND function, which
reduces the macrocell logic requirements. This feature
increases both the logic capacity and available signal
inputs to the Function Blocks.

Gates

The following expressions show the basic logic operations.

ABAR = !lA;

AORB = A#B;
AANDB = A&B;
ANORB = ! (A#B);
ANANDB = ! (A&B);

AEXORB = A$B;
AEXNORB = A!$B;

Multiplexers and Decoders

Using the above methods, compound expressions are
formed to build logic functions. Using AO to A3, BO to B3,
and SEL (select) as inputs, a multiplexer is described as fol-
lows:

DATO = SEL&AO # !SEL&BO;
DAT1 = SEL&Al # !SEL&B1;
DAT2 = SEL&A2 # !SEL&B2;
DAT3 = SEL&A3 # !SEL&B3;

The approach extends to larger multiplexers. The previous
example uses one macrocell per data bit and leaves behind
two unused product terms in each macrocell. To take

advantage of four product terms per macrocell, the imple-
mentation expands as follows:

DATO = S1&S0&D0 # S1&!S0&CO #
1S1&S0&B0 #!S1&!SO0&A0;

DAT1 = S1&SO0&D1 # S1&!SO0&C1 #
1S1&S0&B1 #!S1&!S0&Al;

DAT2 = S1&S0&D2 # S1&!S0&C2 #
1S1&S0&B2 #!S1&!S0&A2;

DAT3 = S1&S0&D3 # S1&!S0&C3 #
1S1&S0&B3 #!S1&!S0&A3;

Very high speed decoders can be built in the macrocelis to
form SRAM select signals, but do not use all of the macro-
cell product terms or the flip-flop in most cases. Decoders
are formed as follows:

DECO = !A3&!A2&!A1&!AQ;

DECl1l = !A3&!A2&!A1&A0;
DEC2 = !A3&!A2&Al1&!A0;
Registers

Simple registers are formed as follows:

A:= DATAINPUT;
A.CLK = CLOCK;
A.RST = RESET;

This describes a D-type flip-flop with its input tied to a sig-
nal named DATAINPUT, its clock tied to a signal called
CLOCK, and its reset input tied to a signal called RESET.

Shift Registers

Cascading registers results in a shift register as follows:

A.CLK = CLOCK;
B.CLK = CLOCK;
C.CLK = CLOCK;
D.CLK = CLOCK;
A.RST = RESET;
= RESET;
= RESET;
D.RST = RESET;

This shift register uses four macrocells. If the signals desig-
nated A,B,C,D are declared as outputs, they will appear
somewhere at the pins of an XC9500 device. If A,B,C, and
D are declared as nodes (internal points), the software
implements them within the macrocells.

Counters

Counters can be built in a number of ways. The most effi-
cient method is to have the macrocell flip-flops configured
as T-type flip-flops. The following equations form T-type flip-
flops; they add logic to load, hold, increment, and clear the
flip-flops. Note the compact vector notation:
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module Tcount

title ‘4 bit counter with load and clear’
DO..D3pin;

Q3..Q0pin istype ‘reg T’;

CLK, I0, Ilpin;

Data = [D3..D0];

Count = [Q3..Q0];

Mode = [I1,I0];

Clear= [0,0];

Load = [1,0];

Inc= [1,1];

equations

Count.T = ((Count.qg+l) & (Mode == Inc)
# (Data)& (Mode == Load)

# (0 )& (Mode == Clear))

§ Count.q

Count.C = CLK;

end

Comparators

Comparators are easily handled by the XC9500 macrocell.
Single bit comparators do not use all available macrocell
product terms, and therefor a more efficient method is to
implement four bits at a time, to generate muitiple com-
pares per macrocell:

COMP = |Bl&!BO&!Al&!AO0 + Bl&!BO&A1&!AO
IB1&BO0&!Al&AQ0 + Bl&BO&A1&AO

Several COMP signals can be gated together to detect
equality across larger groups of bits. Each group of four bits
uses 4 function block inputs and several four-bit compari-
sons can occur per function block. Another macrocell then
forms the composite function of all the bit comparisons, as
needed. Figure 4 shows this technique expanded to a 10-
bit comparator which is commonly used on the most signif-
icant address lines of a 32-bit microprocessor's address
lines.

Parity

Similar to comparisons, parity can be calculated with multi-
ple data bits per macrocell. The first three bits are calcu-
lated using four product terms ORed together. This result is

then delivered to the macrocell Exclusive-OR gate where a
fourth data variable is introduced.

Latches

Occasionally, designers need a transparent latch within an
XC9500 device. This latch is formed by feeding the macro-
cell combinatorial logic back upon itself as shown in the fol-
lowing equation:

Q = ENA&DATA + |ENA&Q + Q&DATA;
The signal Q&DATA is included to make the Q output glitch
free.

2-Bit Compare
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Figure 4: 10-Bit Comparator
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Practical Considerations for XC9500
Designs

By following a few simple rules, XC9500 devices can easily
interface with systems using 3.3 volt and 5 volt devices.
Also, these devices behave much better if standard high
performance printed circuit board techniques are used (as
with all high-speed devices) so a small checklist is provided
here for those rules.

Mixed Voltage Operation

XC9500 CPLDs support mixed voltage systems combining
both 3.3 volt and 5 volt components as shown in Figure 6.
The XC9500 family contains both logic and level shifting
functions in a single programmable device. This eliminates
the need for discrete level translation buffers. The XC9500
devices feature split power supply rails. The internal core
logic always runs at 5 volts for the fastest possible perfor-
mance. The output buffers can be powered by either 5 volts
or 3.3 volts by connecting the I/O V¢ to a 3.3 volt or 5 volt
supply. True TTL compatibility allows XC9500 CPLDs to
drive and be driven by any combination of 3.3 and 5 volt
logic without any performance penalty, even when the 1/O
Vg pins are powered by 3.3 volts.

The XC9500 I/O structure is shown in Figure 5. Input pro-
tection diodes are connected to the internal 5 volt power
supply rail and not to the output buffer supply rail. This
allows the input to withstand a maximum voltage of >5
volts, even when the I/O power pins connect to 3.3 volts.
Since both output transistors are N-channel devices, there
is no parasitic diode to be forward biased if the output is in
a 3-state condition and a 5 volt device is driving the

XC9500 I/O pin. Therefore, the device can operate on a bus
that includes both 3.3 volt and 5 volt devices.

Because the input protection circuitry is powered by the 5
volt core logic supply, the device pins should not be driven
externally until the 5 volt Vgont supply is greater than 3
volts. In mixed 3.3/5 volt systems, where other 3.3 volt logic
may be driving XC9500 devices, this requirement can be
easily met by powering the 3.3 volt supply at the same time
(or after) the 5 volt supply.

XC9500 devices are TTL-compatible with 3.3 and 5 volt
logic as shown in Figure 7. The 5 volt TTL logic input
thresholds are VIH=2.0 V and VIL = 0.8 V. XC9500 CPLDs
drive HIGH greater than 2.4 volts and LOW below 0.4 volts
at the rated output drive currents, with at least 400 mV
noise margin.

Vceio (33V)
L Veeint (5V)
Output .
Drivers { K3 VOPin
Veent (5V)
Input :
Buffers

Can Be Driven By
0-3.3Vor0-5V

= X331

Figure 5: XC9500 I/O Architecture

5V CMOS 5V
X
ov Veewr  Vecio
5VTTL_Of 5VTTL
36V -4V
XC9500
:X: —in XEI00 oyt (- X
ov ov
agv__ o
33V
>< GND
ov l
(@)

T Ty
Figure 6: Typicai Mixed Voitage System

5V CMOS 5V 33V
5V [ I
ov 3 C Veewr  Vecio
5VTTL O 33V
36V 33V
X |~ XC900 out | X
ov ov
33V o
33V
>< GND
ov l

(b) X5901

2-24

January, 1997 (Version 1.0)



& XILINX

Input and Output Breakdown

CPLD33 VIO 5Vand 3.3 V Logic
- 70

V)4 Max 5.5 V (TTL)

4.0

VonMax36V |

3.0

Vo Min 2.4 V 20
Vi Min 2.0V

1.0 V|_Max 0.8V

VoL Max 0.4 V

X5873

Figure 7: Driving 3.3 volt and 5.0 volt Components

High Speed Design Considerations

XC9500 CPLDs are offered with pin-to-pin delays as fast as
5 ns, and the actual speed may be faster. Therefore, addi-
tional care should be taken to minimize noise so that
adjoining devices will operate properly.

Many high speed designs also require high current drive
outputs for handling capacitive loads. XC9500 CPLDs pro-
vide 24 mA drivers to eliminate the need for additional buff-
ering and therefore the designer needs to manage the total
current being switched to minimize possible ground rise
problems.

As with other high speed logic devices, XC9500 CPLDs
should use low inductance capacitors located as close as
possible to the Ve and GND pins on a PC board. Care
should be taken to mount the devices so that the PC board
interconnect traces are as close as possible to the target
signal destinations.

PC Board Layout Checklist:

Complying with the following checklist assures a successful
design with XC9500 CPLDs:

1. Tie unused inputs to ground.

2. Locate XC9500 CPLDs near the devices they drive (or
are driven by) to minimize transmission line effects.

3. Use wide spacing between fast signal lines (particularly
clocks) to minimize crosstalk.

4. Place power pins (Vg and GND) on separate printed
circuit board planes. Fast signals should reside on a dif-
ferent plane.

5. Decouple the device V¢ input with a 0.1 uf capacitor.
Directly connect each V¢ pin to the nearest ground
plane. Low inductance, surface mounted capacitors are
recommended.

6. Decouple the printed circuit board power inputs with 0.1
upf ceramic (high frequency) and 100 ppf electrolytic (low
frequency) filter capacitors.

7. Connect all device ground pins together.

8. Avoid using sockets to attach XC9500 CPLDs to the
PCB. Direct soldered connection minimizes inductance
and reduces ground rise. XC9500 CPLDs are specifi-
cally designed for direct PCB attachment.

Managing Ground Rise

Designers must also be aware of additional factors that can
affect the performance of fast, high-current drive systems.
Possible voltage rise on device ground pins can affect the
driven output levels and be sensed by the switching CPLD.

Figure 8 shows how ground rise is typically observed. In
this setup, multiple outputs are switched with a control vari-
able, while one output is constantly being driven low and
observed.
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Figure 8: Ground Rise Test

Static Output

As the multiple outputs switch, their in-rushing current con-
verges at the ground pins of the device. Lead impedance
causes the reference ground to develop a voltage higher
than that which occurs before switching. The result is that
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the static output being observed also develops an observ-
able voltage swing.

All digital ICs have this property. No harm is caused to the
system unless the voltage swing on the